
Composite Event Recognition with Arbitrary
Specifications

Periklis Mantenogloua,∗, Alexander Artikisb,a

aNCSR “Demokritos”, Greece
bUniversity of Piraeus, Greece

Abstract

Composite event recognition (CER) frameworks reason over streams of low-
level, symbolic events in order to detect instances of spatio-temporal patterns
defining high-level, composite activities. The Event Calculus is a temporal,
logical formalism that has been used to define composite activities in CER,
while RTEC◦ is a formal CER framework that detects composite activities
based on their Event Calculus definitions. RTEC◦, however, cannot han-
dle arbitrary Event Calculus definitions for composite activities, limiting the
range of CER applications supported by RTEC◦. We propose RTECfl , an
extension of RTEC◦ that supports arbitrary composite activity specifica-
tions in the Event Calculus. We present the syntax, semantics, reasoning
algorithms and time complexity of RTECfl . Moreover, we propose a com-
piler for RTECfl , generating the optimal representation of an input set of
Event Calculus definitions. We demonstrate the correctness of our compiler
and outline its time complexity. We conducted an empirical evaluation of
RTECfl on synthetic and real data streams from human activity recognition
and maritime situational awareness, including a comparison with two state-
of-the-art Event Calculus-based systems, which demonstrates the benefits of
RTECfl .

Keywords: Event Calculus, temporal pattern matching, composite event
recognition

∗Corresponding author.
Email addresses: pmantenoglou@iit.demokritos.gr (Periklis Mantenoglou),

a.artikis@unipi.gr (Alexander Artikis)

Preprint submitted to Information and Computation November 1, 2025

1. Introduction

Composite event recognition (CER) involves the detection of composite
activities by reasoning over streams of time-stamped, symbolic events [26, 32].
A CER framework employs a specification language, where it is possible to
express the spatio-temporal combinations of input events that form each ac-
tivity of interest in some application domain. In human activity recognition,
e.g., we may specify the time periods during which two people are ‘gathering’
using a pattern stating that at least one of the two people is walking towards
the other one, while, at the same time, the distance between them is a few
meters and they are facing each other. As another example, in the task of
monitoring composite maritime activities [8], we may define ‘trawling’, i.e., a
type of fishing activity that involves several consecutive turns, as a sequence
of ‘change in heading’ events.

The Event Calculus is a logic programming formalism for representing
and reasoning about events and their effects over time [42]. It may be used
as an activity specification language for CER, as it exhibits several desirable
features, such as a formal, declarative semantics, and a support for relational
and hierarchical activity specifications that may include background knowl-
edge [51, 32]. We focus on the Run-Time Event Calculus (RTEC), which
extends the Event Calculus with optimisation techniques for CER, such as
windowing, indexing and caching [7]. In order to perform CER with minimal
latency, RTEC processes hierarchies of composite activity definitions bottom-
up, while caching and reusing the derived instances of composite activities,
thus avoiding re-computations.

Unfortunately, RTEC does not support arbitrary composite activity defi-
nitions expressed in the Event Calculus. In human activity recognition, e.g.,
we may need to model activities defined in terms of the relative movement
between persons P1 and P2 , i.e., the concept ‘movement(P1 ,P2)’. For in-
stance, expression ‘movement(P1 ,P2)= gathering ’ denotes that P1 and P2

are moving towards one another in order to have a meeting, while we may use
expression ‘movement(P1 ,P2)= abrupt_gestures ’ to denotes that, while P1

and P2 are talking to each other, one of them is moving his arms abruptly.
Furthermore, it may be desirable to express that P1 and P2 may start mak-
ing abrupt gestures to each other only after they have gathered close to one
another, i.e., expression movement(P1 ,P2)= abrupt_gestures depends on
expression movement(P1 ,P2)= gathering . RTEC does not support Event
Calculus definitions where composite activities characterised by the same

2

underlying concept, such as movement(P1 ,P2), depend on each other. To
address this issue, we propose an extension of RTEC that supports arbitrary
Event Calculus definitions.

Our starting point is RTEC◦, a version of RTEC that supports Event
Calculus definitions with cyclic dependencies, which are often required for
CER [48]. We propose RTECfl , an extension of RTEC◦ that supports arbi-
trary composite activity definitions in the Event Calculus. This work is an
extension of an earlier paper [46], where we presented the syntax and the
semantics of RTECfl , and proposed a compiler for RTECfl that converts an
arbitrary set of composite activity definitions in the Event Calculus into a
specification that guarantees correct run-time reasoning. The contributions
of this work may be summarised as follows:

1. We demonstrate that a set of composite activity definitions generated
by our compiler is optimal, i.e., RTECfl does not perform any redun-
dant computations when reasoning with such a set of definitions.

2. We outline the time complexity of our compiler, which is linear to the
number of composite activities and the number of conditions in the
input set of composite activity definitions.

3. We present an empirical evaluation of RTECfl on synthetic and real
data streams from human activity recognition and maritime situational
awareness, including a comparison with two state-of-the-art frameworks
that are based on the Event Calculus. The empirical analysis shows
that RTECfl outperforms the state-of-the-art by several orders of mag-
nitude, while being scalable over large-scale real-world event streams.

RTECfl and its compiler are publicly available1.

2. Related Work

The literature contains numerous CER frameworks [2, 32], several of
which are automata-based [56, 69, 33]. CORE, e.g., is a formal automata-
based CER system that has proven to be more efficient than other contem-
porary automata-based engines [19]. CORE is restricted to unary relations,
while the composite activities derived by CORE cannot be used as building
blocks in other patterns. As a result, contrary to RTECfl , CORE does not

1https://github.com/aartikis/RTEC

3

https://github.com/aartikis/RTEC

support relational composite activities, hierarchical activity definitions and
background knowledge.

There are CER approaches that extend SQL for handling data streams [4,
10, 39, 9, 68, 62]. StreamMill [43], e.g., is an SQL-based system that is re-
stricted to non-blocking queries, i.e., queries that can be answered without
having to wait for an arbitrarily long time for new event arrivals [67]. Al-
though SQL-based formalisms are quite expressive, the queries required to
specify CER patterns are commonly highly complicated, making them hard
to understand and optimise [1].

There are also logic-based CER formalisms [27, 20, 16]. For instance,
there are several frameworks supporting fragments of the LARS language [13]
that are suitable for CER [14, 12, 28]. MeTeoR is a logic-based CER en-
gine whose language extends DatalogMTL with windowing [64, 65]. The
Chronicle Recognition System (CRS) represents composite activities as sets
of events that are associated with time constraints [27]. The language of
CRS includes several operators, such as sequencing, iteration and negation.
TESLA provides a logic-based event specification language that supports
negation, aggregates, iteration and event hierarchies, but does not support
background knowledge [25]. The benefits of RTECfl compared to the afore-
mentioned approaches stem from its use of the Event Calculus, as it includes
a built-in representation of inertia, allowing for succinct composite activity
patterns, and thus supporting code maintenance and reasoning efficiency. At
the same time, Event Calculus specifications are intuitive, paving the way for
the cooperation between data scientist and domain (e.g., maritime) expert,
as well as result explainability.

The Event Calculus has been employed in various settings, including mo-
bility assistance [17], reactive and proactive health monitoring [22, 36] and
simulations with cognitive agents [58]. The ‘Macro Event Calculus’, e.g.,
uses ‘macro-events’ to support composite event operators, such as sequence,
disjunction, parallelism and iteration [21]. The ‘Interval-based Event Calcu-
lus’ incorporates durative events and supports sequencing, concurrency and
negation [52]. The F2LP system maps Event Calculus rules into answer set
programs, allowing the use of answer set programming solvers for reason-
ing [44]. Srinivasan et al. proposed an Event Calculus dialect with an inte-
grated domain specification for biological feedback systems [60]. s(CASP) is
a query-driven execution model for ASP with constraints, supporting Event
Calculus-based reasoning [5].

The aforementioned Event Calculus-based approaches are not designed

4

for temporal pattern matching over streams of events for CER. Fusemate
is a logic programming framework that integrates the Event Calculus with
a description logic in order to reason over event streams [11]. jREC is a
reactive implementation of the Cached Event Calculus [23] which is optimised
for CER [15, 29]. Our work is based on RTEC, which performs CER with
minimal latency; RTEC processes hierarchies of composite activity definitions
bottom-up, while caching and reusing the derived instances of composite
activities, thus avoiding re-computations. RTEC has proven highly efficient
in demanding CER applications, including city transport management [7],
maritime situational awareness [54] and commercial fleet management [63],
outperforming the state-of-the-art [48, 47, 63]. In Section 7, we compare
RTECfl with Fusemate and the most recent implementation of jREC [29].

One of the key advantages of RTEC is its interval-based semantics. Com-
posite activities are typically durative, and thus need to be represented
using temporal intervals [32]. Using sets of individual time-points to rep-
resent occurrences of durative situations fails to capture ongoing activities
and leads to semantic ambiguities in cases of compositional/hierarchical pat-
terns [30, 50, 66].

D2IA is a CER framework that augments the Big Data engine Flink with
interval-based semantics [9]. The language of D2IA extends CQL [4] with
a set of temporal operators for reasoning over durative events. Compared
to RTEC, the language of D2IA has several limitations. In D2IA, e.g., it
is not straightforward to combine instantaneous and durative events in the
conditions of a pattern, while negation is limited to the absence of a specified
type of instantaneous event between the occurrences of two other events.
Moreover, D2IA does not support background knowledge in event patterns.
TPStream [39] is a CER framework that performs temporal pattern matching
over intervals of durative activities, which are derived based on instantaneous
input events. In TPStream, durative activities cannot be defined in terms of
multiple event types or background knowledge. ISEQ [45] performs temporal
pattern matching over streams of durative activities. ISEQ does not allow
for the derivation of durative activities from instantaneous events. Unlike
RTEC, neither ISEQ nor TPStream supports relational patterns, which is a
significant limitation for CER. ETALIS [3] is a CER system that supports
interval-based reasoning with background knowledge. ETALIS does not allow
for the explicit representation of time, complicating the specification of fluent
value changes, including the formalisation of the common-sense law of inertia,
which is innate in the Event Calculus.

5

Table 1: Main predicates of RTEC◦.

Predicate Meaning

happensAt(E ,T) Event E occurs at time T .

initiatedAt(F =V ,T)
At time T , a period of time during
which fluent F has value V is initiated.

terminatedAt(F =V ,T)
At time T , a period of time during
which fluent F has value V is terminated.

holdsAt(F =V ,T) The value of fluent F is V at time T .

holdsFor(F =V , I)
Fluent F has value V continuously
in the maximal intervals included in list I .

3. Background

Our starting point is RTEC◦, i.e., a recent extension of the Run-Time
Event Calculus (RTEC) that supports efficient reasoning over temporal speci-
fications with cyclic dependencies [48]. We present the syntax, semantics and
reasoning algorithms of RTEC◦. In Section 4, we outline the limitations of
RTEC◦, and, in Section 5, we present an extension of RTEC◦ that supports
arbitrary Event Calculus definitions.

3.1. Syntax & Semantics
The language of RTEC◦ follows the Event Calculus, which is many-

sorted, including sorts for representing time, instantaneous events and ‘flu-
ents’, i.e., properties that may have different values at different points in
time. The time model comprises a linear time-line with non-negative inte-
ger time-points. happensAt(E ,T) signifies that event E occurs at time-point
T . initiatedAt(F =V ,T) (resp. terminatedAt(F =V ,T)) expresses that a time
period during which a fluent F has the value V continuously is initiated
(terminated) at time-point T . holdsAt(F =V ,T) states that F has value V
at T , while holdsFor(F =V , I) expresses that the ‘fluent-value pair’ (FVP)
F=V holds continuously in the maximal intervals included in list I . Table
1 summarises these main predicates of RTEC◦.

In CER, happensAt is used to express the input events of the stream,
while FVPs express composite activities. A formalisation of all activities of
a domain of interest in the Event Calculus is called event description.

6

Definition 1 (Event Description). An event description E is a set of:

• ground happensAt(E ,T) facts, expressing a stream of event instances,
and

• rules with head initiatedAt(F =V ,T) or terminatedAt(F =V ,T), ex-
pressing the effects of events on FVP F=V . ■

Definition 2 (Syntax of the Rules in the Event Description). Rules with
head initiatedAt(F =V ,T) have the following syntax:

initiatedAt(F =V , T)←
happensAt(E1 , T)[[,
[not] happensAt(E2 , T), . . . , [not] happensAt(En , T),
[not] holdsAt(F1 =V1 , T), . . . , [not] holdsAt(Fk =Vk , T)]].

(1)

The first body literal of an initiatedAt rule is a positive happensAt predicate;
this is followed by a possibly empty set, denoted by ‘[[]]’, of positive/negative
happensAt and holdsAt predicates. ‘not’ expresses negation-by-failure [24],
while ‘[not]’ denotes that ‘not’ is optional. All (head and body) predicates are
evaluated on the same time-point T . The bodies of terminatedAt(F =V ,T)
rules have the same form. ■

Example 1 (Event Description for Human Activity Recognition). In human
activity recognition, we apply rules on streams containing symbolic repre-
sentations of video feeds [6]. In general, such rules are constructed in col-
laboration with domain experts or learned from data [38]. We use the fluent
interaction(P1 ,P2) to express that people P1 and P2 are interacting, while
the value of interaction(P1 ,P2) denotes the stage of the interaction. The
‘greeting ’ stage of interaction(P1 ,P2) denotes that P1 and P2 are greeting
each other at a distance. Below, we outline a set of rules comprising the

7

specification of FVP interaction(P1 ,P2)= greeting :

initiatedAt(interaction(P1 ,P2)= greeting , T)←
happensAt(active(P1), T),
happensAt(active(P2), T),
holdsAt(distance(P1 ,P2)=mid , T),
holdsAt(orientation(P1 ,P2)= facing , T).

(2)

terminatedAt(interaction(P1 ,P2)= greeting , T)←
happensAt(walking(P1), T),
not holdsAt(orientation(P1 ,P2)= facing , T).

(3)

terminatedAt(interaction(P1 ,P2)= greeting , T)←
happensAt(walking(P2), T),
not holdsAt(orientation(P1 ,P2)= facing , T).

(4)

According to rule (2), P1 and P2 start greeting when both of them are
‘active’, i.e., moving their arms while in the same position, the distance
between them is a few meters, denoted by the value ‘mid’, and they are facing
towards one another. Rules (3)–(4) express that P1 and P2 stop greeting
when one of them starts walking, while they are not facing each other. The
FVPs distance(P1 ,P2)=mid and orientation(P1 ,P2)= facing are defined
based on the coordinates and the orientation of the tracked people, which
are provided in the input stream.

Moreover, we may use the fluent movement(P1 ,P2) to express the rel-
ative movement between people P1 and P2 and the value ‘gathering ’ of
movement(P1 ,P2) to denote that P1 and P2 are approaching one another.
The specification of FVP movement(P1 ,P2)= gathering comprises the fol-

8

lowing rules:

initiatedAt(movement(P1 ,P2)= gathering , T)←
happensAt(walking(P1), T),
holdsAt(distance(P1 ,P2)=mid , T),
holdsAt(orientation(P1 ,P2)= facing , T).

(5)

initiatedAt(movement(P1 ,P2)= gathering , T)←
happensAt(walking(P2), T),
holdsAt(distance(P1 ,P2)=mid , T),
holdsAt(orientation(P1 ,P2)= facing , T).

(6)

terminatedAt(movement(P1 ,P2)= gathering , T)←
happensAt(active(P1), T),
not happensAt(walking(P2), T).

(7)

terminatedAt(movement(P1 ,P2)= gathering , T)←
happensAt(active(P2), T),
not happensAt(walking(P1), T).

(8)

Rules (5)–(6) state that P1 and P2 start gathering when one of them is walk-
ing towards the other person, while their distance is a few meters and they
are facing each other. Rules (7)–(8) express that P1 and P2 stop gathering
when one of them is being active, while the other person is not walking. ♢

The dependencies among the FVPs in an event description can be ex-
pressed in the form of a dependency graph.
Definition 3 (Dependency Graph). The dependency graph of an event de-
scription is a directed graph G =(V , E), where:

1. V contains one vertex vF =V for each FVP F =V .
2. E contains an edge (vFj =Vj , vFi =Vi) iff there is an initiatedAt/terminatedAt

rule for Fi =Vi having holdsAt(Fj =Vj ,T) as one of its conditions. ■

The vertices and edges of Figure 1a that are drawn with continuous lines,
e.g., comprise the dependency graph GE1 of event description E1 , which con-
tains rules (2)–(8) of Example 1.

Based on the dependency graph of an event description, it is possible to
define a function level that maps the FVPs of the event description to the
positive integers. Towards defining an FVP level function, we define the level
of a vertex in a directed acyclic graph as follows:
Definition 4 (Vertex Level). Given a directed acyclic graph, the level of a
vertex v is equal to:

9

orientation(P1,P2)=facing

movement(P1,P2)=gathering

interaction(P1,P2)=greeting

interaction(P1,P2)=talking

distance(P1,P2)=short

distance(P1,P2)=mid movement(P1,P2)=abrupt_gestures

(a) The dependency graph GE1
of event description E1 (continuous lines), the dependency graph GE2

of
event description E2 (continuous and dashed lines), and the dependency graph GE3 of event description
E3 (all lines). For simplicity, a vertex vj is displayed as j .

orientation(P1,P2)

interaction(P1,P2)movement(P1,P2)
distance(P1,P2)

(b) The fluent dependency graph Gfl
E2

of E2 . The

contracted fluent dependency graph Gcdfl
E2

of E2 is

the same as Gfl
E2

.

orientation(P1,P2) interaction(P1,P2)

movement(P1,P2)distance(P1,P2)

(c) The fluent dependency graph Gfl
E3

of E3 .

orientation(P1,P2)
movement(P1,P2),
interaction(P1,P2)

distance(P1,P2)

(d) The contracted fluent dependency
graph Gcdfl

E3
of E3 . We display a vertex

vSi
of a contracted fluent dependency

graph, where Si is a SCC of the corre-
sponding fluent dependency graph, as
the set of fluents whose vertices are in
Si .

Figure 1: Dependency graphs, fluent dependency graphs and contracted fluent dependency
graphs. We use distinct shapes for the vertices of each type of graph to aid the presentation.

1. 1 , if v has no incoming edges.
2. n, where n > 1 , if v has at least one incoming edge from a vertex

of level n−1 , and zero or more incoming edges from vertices of levels
lower than n−1 . ■

A dependency graph may or may not be acyclic. Given an acyclic depen-
dency graph, the level of an FVP F=V is defined as the level of vertex vF =V

in the dependency graph. In the acyclic dependency graph of Figure 1a, e.g.,
vinteraction(P1 ,P2)= greeting has level 2 , and thus interaction(P1 ,P2)= greeting
has level 2 . In order to handle cyclic dependency graphs, we employ the
contracted dependency graph of an event description, which is, by definition,
acyclic. Then, we define the level of an FVP based on the level of the corre-
sponding vertex in the contracted dependency graph.

A directed graph becomes acyclic by contracting its strongly connected

10

components (SCC)s into single vertices.
Definition 5 (SCC Contracted Graph). Given a directed graph G =(V , E)
and the SCCs S1 , S2 , . . . , Sn of G , the SCC contracted graph Gcd =(Vcd , Ecd)
of G is defined as follows:

1. Vcd =
⋃

1≤i≤n{vSi}.
2. (vSi , vSj) ∈ Ecd iff ∃vi , vj ∈ V , such that vi ∈ Si , vj ∈ Sj , Si ̸= Sj and

(vi , vj) ∈ E . ■

Definition 6 (Contracted Dependency Graph). Consider an event descrip-
tion with dependency graph G . The contracted dependency graph of the
event description is the SCC contracted graph of G . ■

The dependency graph GE1 in Figure 1a is acyclic, i.e., every SCCs of
GE1 contains one vertex. As a result, the contracted dependency graph Gcd

E1
of GE1 is the same as GE1 .
Definition 7 (FVP Level in RTEC◦). Consider an event description with
dependency graph G and contracted dependency graph Gcd . The level of an
FVP F=V , such that vertex vF =V is included in SCC Si of G , is equal to
the level of vertex vSi in Gcd . ■

RTEC◦ supports event descriptions where FVPs with the same fluent have
the same FVP level. For such an event description, a local stratification
may be constructed as follows. The first stratum contains all groundings
of happensAt. The remaining strata are formed by following, in a bottom-up
fashion, the levels of FVPs. For each FVP level l without cyclic dependencies,
we have one stratum containing the ground predicates for FVPs with level
l . For each FVP level l with cyclic dependencies, the ground predicates for
FVPs with level l have to be stratified further in terms of their time-stamp.
We introduce an additional stratum for each time-point of the window, i.e.,
the finite portion of the stream currently being processing by RTEC◦.
Proposition 1 (Semantics of RTEC◦). Consider an event description E
where the FVPs with the same fluent have the same FVP level (see Defi-
nition 7). E is a locally stratified logic program [57]. ♦

3.2. Reasoning
The key reasoning task of RTEC◦ is the computation of holdsFor(F =V , I),

i.e., the list of maximal intervals I during which each FVP F=V of the event
description holds continuously. Recall that, in CER, FVPs express the com-
posite activities that we are interested in detecting. RTEC◦ computes list I

11

orientation(P1 ,P2) = facing

distance(P1 ,P2) =mid

walking(P2)

active(P2)

walking(P1)

active(P1)

interaction(P1 ,P2) = greeting

Time

Figure 2: Maximal interval computation for interaction(P1 ,P2)= greeting . Each row of
dots (resp. horizontal lines) denotes the instantaneous occurrences (maximal intervals) of
the event (FVP) reported at the start of the row. Green (red) dots signify events leading
to an initiation (termination) of interaction(P1 ,P2)= greeting . Black (blue) lines denote
input (output) maximal intervals.

in holdsFor(F =V , I) as follows. First, it computes the initiations of F =V
based on the rules of the event description with head initiatedAt(F =V ,T).
Second, if there is at least one initiation of F=V , then RTEC◦ computes the
terminations of F =V based on the rules with head terminatedAt(F =V ,T),
as well as the rules with head initiatedAt(F =V ′,T), where V ′ ̸=V . Third,
RTEC◦ computes the maximal intervals of F =V by matching each initiation
Ts of F =V with the first termination Te of F =V after Ts , ignoring every
intermediate initiation between Ts and Te . holdsAt(F =V ,T) may then be
evaluated by checking whether T belongs to one of the maximal intervals of
FVP F=V .

Figure 2 presents an example for the computation of holdsFor, where
RTEC◦ evaluates holdsFor(interaction(P1 ,P2)= greeting , I) using rules (2)–
(4). First, RTEC◦ computes the initiations of interaction(P1 ,P2)= greeting .
Based on rule (2), there is an initiation of interaction(P1 ,P2)= greeting at
each time-point where both P1 and P2 are ‘active’, i.e., events active(P1) and
active(P2) take place, while they are facing each other at a distance of a few
meters, i.e., FVPs orientation(P1 ,P2)= facing and distance(P1 ,P2)=mid
hold. Based on the input in Figure 2, these conditions are satisfied at
three time-points—denoted by coloring the corresponding events green—
which comprise the initiations of interaction(P1 ,P2)= greeting . Afterwards,
RTEC◦ computes the terminations of interaction(P1 ,P2)= greeting . Accord-
ing to rules (3)–(4), there is a termination of interaction(P1 ,P2)= greeting
at each time-point where P1 and P2 are not facing each other, i.e., FVP

12

orientation(P1 ,P2)= facing does not hold, and one of them starts walking,
i.e., event walking(P1) or event walking(P2) takes place. Thus, based on our
input, there are three terminations of interaction(P1 ,P2)= greeting , which
were the result of the events colored red. Having computed the initations
and the terminations of interaction(P1 ,P2)= greeting , RTEC◦ proceeds to
the computation of its maximal intervals. In our example, there is one max-
imal interval for interaction(P1 ,P2)= greeting , constructed by matching its
first initiation with its first termination, ignoring the two intermediate initi-
ations (see the interval colored blue in Figure 2).

RTEC◦ processes FVPs in a bottom-up manner, computing and caching
their intervals level-by-level. In order to derive the initiations and the ter-
minations of an FVP F=V , we evaluate the initiatedAt and terminatedAt rules
defining F=V . The body of such a rule may include a holdsAt(F ′=V ′,T)
condition (see rule schema (1)), leading to an edge (vF ′ =V ′ , vF =V) in the
dependency graph (see Definition 3). We distinguish two cases for the eval-
uation of holdsAt(F ′ =V ′,T):

1. Vertices vF ′ =V ′ and vF =V are not part of a cycle in the dependency
graph. In this case, vF ′ =V ′ and vF =V are in different SCCs of the
dependency graph and, based on edge (vF ′ =V ′ , vF =V), F ′ =V ′ has a
lower level than F=V (see Definition 7). Since RTEC◦ processes FVPs
in ascending FVP level order, at the time of processing F=V , the inter-
vals of F ′=V ′ that are required to compute holdsAt(F ′ =V ′,T) have
been derived and cached at a previous step. Thus, holdsAt(F ′ =V ′,T)
is resolved by fetching the intervals of F ′=V ′ from the cache and
checking whether T belongs to one of those intervals, without the need
for re-computation.

2. Vertices vF ′ =V ′ and vF =V are part of a cycle in the dependency graph.
In this case, vF ′ =V ′ and vF =V are in the same SCC of the dependency
graph, and thus F ′ =V ′ and F=V have the same level (see Defini-
tion 7). As a result, RTEC◦ may process F=V before F ′=V ′, in
which case the intervals of F ′ =V ′ are not be present in the cache at
the time of processing F=V . To address this issue, RTEC◦ computes
holdsAt(F ′ =V ′,T) using the incremental caching techniques presented
in [48].

13

4. Problem Statement

Towards a more accurate domain specification for human activity recog-
nition, we may extend event description E1 of Example 1 with a definition
for an FVP expressing that two people are talking.
Example 2 (Representing interaction(P1 ,P2)= talking (Example 1 cont’d)).
After having approached one another, persons P1 and P2 may start talking,
in which case the value of the interaction(P1 ,P2) fluent should change from
‘greeting ’ to ‘talking ’. The specification of FVP interaction(P1 ,P2)= talking
comprises the following rules:

initiatedAt(interaction(P1 ,P2)= talking , T)←
happensAt(active(P1), T),
holdsAt(distance(P1 ,P2)= short , T),
holdsAt(orientation(P1 ,P2)= facing , T),
not holdsAt(movement(P1 ,P2)= gathering , T).

(9)

initiatedAt(interaction(P1 ,P2)= talking , T)←
happensAt(active(P2), T),
holdsAt(distance(P1 ,P2)= short , T),
holdsAt(orientation(P1 ,P2)= facing , T),
not holdsAt(movement(P1 ,P2)= gathering , T).

(10)

terminatedAt(interaction(P1 ,P2)= talking , T)←
happensAt(inactive(P1), T),
happensAt(inactive(P2), T).

(11)

According to rules (9)–(10), P1 and P2 start talking when one of them is
being active, while their distance is about one meter, denoted by ‘short’,
they are facing one another and their relative movement is not ‘gathering’,
i.e., P1 and P2 are not moving towards one another. Rule (11) denotes that
P1 and P2 stop talking when neither of them is being active. ♢

A fluent cannot have more than one value at any time; an initiation of
an FVP F =V1 implies a termination of FVP F =V2 , where V1 ̸=V2 . As a
result, there are implicit dependencies among FVPs with the same fluent. In
the event description of Example 2, e.g., FVPs interaction(P1 ,P2)= greeting
and interaction(P1 ,P2)= talking implicitly depend on each other.

The vertices and edges of Figure 1a that are drawn with continuous or
dashed lines comprise the dependency graph GE2 of event description E2 , i.e.,
the extension of event description E1 with rules (9)–(11) of Example 2. FVPs

14

interaction(P1 ,P2)= greeting and movement(P1 ,P2)= gathering have level
2 , while FVP interaction(P1 ,P2)= talking has level 3 (see Definition 7).

Event description E2 contains FVPs with the same fluent and different
levels, which is common in CER specifications. In city transport manage-
ment, e.g., fluent ‘punctuality(Vh)’ may be used to monitor the punctuality
level of a vehicle Vh over time [7]. punctuality(Vh)= low may be initiated
when Vh leaves a stop earlier than scheduled while punctuality(Vh)=mid
holds. As another example, in maritime activity monitoring, we may employ
the fluent ‘fishing_trip(Vl)’ to survey a fishing trip of a vessel Vl [54]. FVP
fishing_trip(Vl)= ended may depend on FVP fishing_trip(Vl)= returning ,
which expresses the previous stage of the trip. In these cases, the level of FVP
punctuality(Vh)= low is higher than the level of punctuality =mid , while
fishing_trip(Vl)= ended has a higher level than fishing_trip(Vl)= returning
(see Definition 7).

RTEC◦ does not support event descriptions, such as E2 , where FVPs with
the same fluent have different levels. Suppose that FVP F =V1 has level n
and FVP F =V2 has level m, where n < m, and that RTEC◦ is currently
processing the FVPs with level n. When processing F =V1 , RTEC◦ needs
to evaluate the rules with head initiatedAt(F =V2 ,T), as the initiation of
F =V2 constitute terminations of F =V1 . Such a rule may include a body
condition referring to an FVP F ′=V ′ with level n ′, where n ≤ n ′ < m.
Since F ′=V ′ has a lower level than F =V2 , RTEC◦ attempts to evaluate
holdsAt(F ′ =V ′,T) by retrieving the intervals of F ′=V ′ from the cache,
in order to check whether T belongs to one of them. However, the cache
of RTEC◦ may not contain the intervals of F ′ =V ′ at this time, because
F ′=V ′ has level n ′ and RTEC◦ is currently processing the FVPs with level
n, where n ≤ n ′, compromising correctness.

In the case of E2 , when processing interaction(P1 ,P2)= greeting , RTEC◦
evaluates the initiations of interaction(P1 ,P2)= talking , as they are ter-
minations of interaction(P1 ,P2)= greeting . According to rules (9)–(10) of
event description E2 , the initiations of interaction(P1 ,P2)= talking depend
on FVP movement(P1 ,P2)= gathering , whose intervals may not present in
the cache at the time of processing interaction(P1 ,P2)= greeting . For this
reason, RTEC◦ does not support event description E2 .

We may address this issue by assigning to interaction(P1 ,P2)= greeting
a higher level than the level of movement(P1 ,P2)= gathering . According
to dependency graph GE2 (see Figure 1a), since there is no FVP that de-
pends on FVP interaction(P1 ,P2)= greeting , we may increase the level of

15

interaction(P1 ,P2)= greeting to 3 without producing an FVP level assign-
ment that compromises the correctness of the bottom-up processing of RTEC◦.
In this way, FVP movement(P1 ,P2)= gathering is processed by RTEC◦ be-
fore FVP interaction(P1 ,P2)= greeting , and thus, at the time of processing
interaction(P1 ,P2)= greeting , the cache of RTEC◦ contains the maximal in-
tervals of movement(P1 ,P2)= gathering , avoiding the aforementioned error.

However, it is not always possible to circumvent the issues introduced by
FVPs with the same fluent and different levels by increasing the level of an
FVP. Consider the following example, where we extend event description E2
with a definition for an FVP expressing that two people are making abrupt
movements while talking.
Example 3 (Representing movement(P1 ,P2)= abrupt_gestures (Example
2 cont’d)). While people P1 and P2 are talking, they may start moving their
arms abruptly, possibly indicating that a fight between P1 and P2 is about to
start. The specification of FVP movement(P1 ,P2)= abrupt_gestures com-
prises the following rules:

initiatedAt(movement(P1 ,P2)= abrupt_gestures , T)←
happensAt(abrupt(P1), T),
holdsAt(interaction(P1 ,P2)= talking , T).

(12)

initiatedAt(movement(P1 ,P2)= abrupt_gestures , T)←
happensAt(abrupt(P2), T),
holdsAt(interaction(P1 ,P2)= talking , T).

(13)

terminatedAt(movement(P1 ,P2)= abrupt_gestures , T)←
happensAt(active(P1), T),
not happensAt(abrupt(P2), T).

(14)

terminatedAt(movement(P1 ,P2)= abrupt_gestures , T)←
happensAt(active(P2), T),
not happensAt(abrupt(P1), T).

(15)

Rules (12)–(13) denote that movement(P1 ,P2)= abrupt_gestures is initi-
ated when one of the people P1 and P2 starts moving abruptly while the
two of them are talking. Rules (14)–(15) express that we have a termination
of movement(P1 ,P2)= abrupt_gestures when one of the two people starts
being active while the other one is not moving abruptly. ♢

All the vertices and edges in Figure 1a compose dependency graph GE3
of event description E3 , i.e., the extension of event description E2 with rules

16

(12)–(15). According to GE3 , FVP movement(P1 ,P2)= abrupt_gestures has
level 4 .

Event description E3 contains FVPs with the same fluent and different lev-
els. FVPs interaction(P1 ,P2)= greeting and interaction(P1 ,P2)= talking
have level 2 and 3 , respectively, while FVPs movement(P1 ,P2)= gathering
and movement(P1 ,P2)= abrupt_gestures have level 2 and 4 . As a re-
sult, RTEC◦ does not support event description E3 . When processing FVP
movement(P1 ,P2)= gathering , RTEC◦ may need to evaluate the termina-
tions of movement(P1 ,P2)= gathering , which include the initiations of FVP
movement(P1 ,P2)= abrupt_gestures . According to rules (12)–(13), these
initiations depend on interaction(P1 ,P2)= talking , whose intervals are not
present in the cache at this time.

In this case, we cannot set the level of movement(P1 ,P2)= gathering
to 4 , with the goal of processing FVP interaction(P1 ,P2)= talking before
movement(P1 ,P2)= gathering , because dependency graph GE3 contains edge
(vmovement(P1 ,P2)= gathering , vinteraction(P1 ,P2)= talking), implying that we cannot
compute the maximal intervals of interaction(P1 ,P2)= talking before pro-
cessing movement(P1 ,P2)= gathering . Thus, these FVPs should have the
same level. Moreover, FVP interaction(P1 ,P2)= greeting depends on FVP
interaction(P1 ,P2)= talking , and vice versa, which means that these FVPs
should also have the same level. Therefore, all the aforementioned FVPs
should have the same level, i.e., 2 , implying that they must be processed
with incremental caching (see the second case presented in Section 3.2).

5. Proposed Solution: RTECfl

We propose RTECfl , an extension of RTEC◦ that supports event descrip-
tions where the vertices of FVPs with the same fluent may have different
levels, such as event descriptions E2 and E3 . To achieve this, RTECfl incor-
porates a new definition for FVP level that takes into account the implicit
dependencies between FVPs with the same fluent. We demonstrate that,
based on the definition of FVP level in RTECfl , we may construct a local
stratification for every possible event description. Afterwards, we propose
a compiler for RTECfl that assigns a level to each FVP of an input event
description and identifies the holdsAt(F =V ,T) conditions that need to be
resolved with the incremental caching technique proposed in [48], because the
intervals of F=V may not be present in the cache at the time of evaluating
holdsAt(F =V ,T). We prove the correctness of our compiler, demonstrat-

17

ing that it generates event descriptions that are optimal with respect to the
representation of holdsAt conditions, and outline its time complexity. More-
over, we outline the cost of RTECfl , showing that it is the same as the cost
of RTEC◦. Therefore, RTECfl extends the range of temporal specifications
supported by RTEC◦, while maintaining its high reasoning efficiency.

5.1. Syntax & Semantics
In RTECfl , all FVPs with the same fluent have the same level. This is

achieved by determining FVP level based on the fluent dependency graph of
the event description, which is defined as follows:
Definition 8 (Fluent Dependency Graph). Consider an event description
with dependency graph G =(V , E). The fluent dependency graph of the event
description is a directed graph Gfl =(Vfl , Efl), where:

1. Vfl contains one vertex vF for each fluent F .
2. Efl contains an edge (vF1 , vF2), where F1 ̸=F2 , iff there is an edge

(vF1 =V1 , vF2 =V2) in E , where V1 and V2 are values of fluents F1 and
F2 , respectively. ■

Figure 1b, e.g., depicts the fluent dependency graph Gfl
E2 of event de-

scription E2 of Example 2. Vertex vinteraction(P1 ,P2) of Gfl
E2 corresponds to

vertices vinteraction(P1 ,P2)= greeting and vinteraction(P1 ,P2)= talking of GE2 , inheriting
their incoming edges.

The fluent dependency graph Gfl
E2 is acyclic. Therefore, we may assign to

each FVP F=V of event description E2 the level of vertex vF in the fluent
dependency graph Gfl

E2 , which is derived by following Definition 4. It could be
the case, however, that the fluent dependency graph of an event description
contains cycles. Figure 1c, e.g., depicts the fluent dependency graph Gfl

E3 of
event description E3 . Gfl

E3 includes a cycle, while, according to Definition 4,
the level of a vertex is defined only on acyclic graphs. To address this issue,
we contract the vertices of the fluent dependency graph that are in the same
strongly connected component (SCC), leading to an acyclic graph. We define
the contracted fluent dependency graph as follows:
Definition 9 (Contracted Fluent Dependency Graph). Consider an event
description with fluent dependency graph Gfl . The contracted fluent depen-
dency graph Gcdfl of the event description is the SCC contracted graph of
Gfl . ■

18

Consider, e.g., the fluent dependency graph Gfl
E2 of Figure 1b. Gfl

E2 is
acyclic, and thus every SCC of Gfl

E2 contains one vertex. As a result, the
contracted fluent dependency graph Gcdfl

E2 of Gfl
E2 is the same as Gfl

E2 . As
another example, Figure 1d presents the contracted fluent dependency graph
Gcdfl

E3 corresponding to the fluent dependency graph Gfl
E3 in Figure 1c, which is

produced by contracting vertices vmovement(P1 ,P2) and vinteraction(P1 ,P2) of Gfl
E3 ,

as these vertices are in the same SCC of Gfl
E3 . Due to this contraction of

vertices, Gcdfl
E3 is acyclic.

We may assign a level to each vertex in a contracted fluent dependency
graph by following Definition 4. We define the level of an FVP in RTECfl

as follows:
Definition 10 (FVP Level in RTECfl). Consider an event description with
fluent dependency graph Gfl and contracted fluent dependency graph Gcdfl .
The level of an FVP F=V , such that vertex vF is included in SCC Si of Gfl ,
is equal to the level of vertex vSi of Gcdfl . ■

Based on Definition 10, FVPs with the same fluent have the same level. In
the case of event description E2 , e.g., where the contracted fluent dependency
graph Gcdfl

E2 of E2 matches with the fluent dependency graph in Figure 1b,
FVPs interaction(P1 ,P2)= greeting and interaction(P1 ,P2)= talking have
level 3 because the level of vertex vinteraction(P1 ,P2) in Gcdfl

E2 is 3 . In the case of
event description E3 , the vertex of the contracted fluent dependency graph
corresponding to fluents movement(P1 ,P2) and interaction(P1 ,P2) has level
2 (see Figure 1d). Thus, the FVPs with fluent movement(P1 ,P2), i.e.,
movement(P1 ,P2)= gathering and movement(P1 ,P2)= abrupt_gestures , and
the FVPs with fluent interaction(P1 ,P2), i.e., interaction(P1 ,P2)= greeting ,
interaction(P1 ,P2)= talking , have level 2 .

We can devise a local stratification of an event description by following
bottom-up the levels of FVPs, as specified in Definition 10. For each level
with cyclic dependencies, we introduce an additional stratum per time-point,
following an ascending temporal order.
Proposition 2 (Semantics of RTECfl). An event description is a locally
stratified logic program. ♦

According to Proposition 2, RTECfl supports every event description E
that follows Definition 1. If the dependency graph of E contains FVPs with
the same fluent whose vertices are in different levels of the graph, then these
FVPs are assigned the same level, following the definition of FVP level in

19

Algorithm 1 compile(E)

1: Gcdfl
E ← construct_contracted_fluent_dependency_graph(E)

2: level ← compute_fvp_level(Gcdfl
E)

3: for each rule r in E do
4: F =V ← get_fvp_in_head(r)
5: for each condition ‘[not] holdsAt(F ′ =V ′,T)’ in the body of r do

▷ not is optional.
6: if level [F ′=V ′] = level [F =V] then
7: replace ‘[not] holdsAt(F ′=V ′,T)’

with ‘[not] holdsAtCyclic(F ′ =V ′,T)’ in r

8: return E

RTECfl (see Definition 10), avoiding the issues described in Section 4.

5.2. Compiler
We developed a compiler that assigns a level to each FVP of an input

event description E and marks the holdsAt body conditions of the rules in
E that must be evaluated with incremental caching, in order to guarantee
correct reasoning. The compilation is performed before the commencement
of run-time reasoning, in a process transparent to the event description de-
veloper. According to Algorithm 1, the compilation steps are the following:

1. First, we derive the levels of the FVPs in the input event description
E by following Definitions 9 and 10, i.e.:

• We construct the contracted fluent dependency graph Gcdfl
E of E

(line 1 of Algorithm 1).
• Subsequently, we assign a level to each FVP in E based on the

level of the corresponding vertex of Gcdfl
E (line 2).

2. The compiler identifies the holdsAt conditions in E that need to be
evaluated with incremental caching. For each holdsAt(F ′=V ′,T) or
‘not holdsAt(F ′ =V ′,T)’ condition in the body of a rule in E :

• The compiler checks whether the level of FVP F ′ =V ′ is equal to
the level of the FVP in the head of the rule (lines 3–6).

• If this is the case, then the compiler translates holdsAt(F ′ =V ′,T)
(resp. ‘not holdsAt(F ′ =V ′,T)’) into holdsAtCyclic(F ′ =V ′,T)
(‘not holdsAtCyclic(F ′ =V ′,T)’) (line 7).

20

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

RTECfl

Compiler

orientation(P1,P2)=facing

movement(P1,P2)=gathering

interaction(P1,P2)=greeting

interaction(P1,P2)=talking

distance(P1,P2)=short

distance(P1,P2)=mid movement(P1,P2)=abrupt_gestures

1orientation(P1,P2)=facing 2movement(P1,P2)=gathering

2interaction(P1,P2)=greeting

2interaction(P1,P2)=talking1distance(P1,P2)=short

2movement(P1,P2)=abrupt_gestures

1distance(P1,P2)=mid

Symbolic Event Stream

……

……
Composite Activity Stream

… …

… …

Figure 3: Compilation of event description E3 into event description E∗3 , and the subsequent
use of E∗3 by RTECfl for CER. We represent E3 with the corresponding dependency graph
GE3 , and E∗3 with a version of GE3 where each vertex is annotated with the level computed
by our compiler for the corresponding FVP.

Figure 3 depicts the compilation of event description E3 , resulting in event
description E∗3 , and the subsequent use of E∗3 by RTECfl for CER. Given E3 as
input, our compiler first constructs the contracted fluent dependency graph
of E3 and then computes the levels of the FVPs in E3 based on this graph
(see lines 1–2 of Algorithm 1). In Figure 3, the level derived for each FVP is
displayed in the corresponding vertex of the dependency graph in the output
of our compiler. Afterwards, our compiler iterates over the rules in E3 ; for
each rule, our compiler identifies the holdsAt(F ′ =V ′,T) expressions in rules
where the level of FVP F ′ =V ′ is equal to the level of the FVP in the head
of the rule and translates them into holdsAtCyclic(F ′ =V ′,T) (see lines 3–7).
In other words, when there is an edge (vFj =Vj , vFi =Vi) in the dependency
graph where Fj =Vj and Fi =Vi have the same level, we use holdsAtCyclic for
every condition with FVP Fj =Vj that is in the body of a rule with FVP
Fi =Vi in its head. In the case of E3 , the edges connecting vertices of FVPs
with the same level are (vmovement(P1 ,P2)= gathering , vinteraction(P1 ,P2)= talking) and

21

(vinteraction(P1 ,P2)= talking , vmovement(P1 ,P2)= abrupt_gestures) (see the dependency
graph in the output of our compiler in Figure 3). As a result, the
holdsAt(movement(P1 ,P2)= gathering ,T) expressions in rules with FVP
interaction(P1 ,P2)= talking in their head (i.e., rules (9)–(10)), and the
holdsAt(interaction(P1 ,P2)= talking ,T) expressions in rules with FVP
movement(P1 ,P2)= abrupt_gestures in their head (i.e., rules (12)–(13)), are
translated into holdsAtCyclic. These translations lead to event description E∗3 ,
which may subsequently be supplied to RTECfl in order to perform CER.
At run-time, RTECfl evaluates the conditions with holdsAtCyclic using in-
cremental caching (recall the second case presented in Section 3.2) and the
conditions with holdsAt using the interval retrieval operation (see the first
case of Section 3.2). A further discussion on run-time reasoning is presented
in Section 8.

6. Formal Properties

6.1. Correctness
We formulate the requirements for the correctness of our compiler with

respect to its task, i.e., the identification of the holdsAt conditions in the
rules of an event description that may require cyclic processing, and should
thus be translated into holdsAtCyclic. Suppose that we translated every holdsAt
condition into holdsAtCyclic, even though only a subset of these conditions may
require cyclic processing. Such a translation should not be considered correct,
as, since processing holdsAtCyclic is more costly than processing holdsAt, it may
lead to redundant computations that could have been avoided by translating
only the holdsAt conditions that require cyclic processing. On the other end
of the spectrum, translating none of the holdsAt conditions into holdsAtCyclic
may also be incorrect, because it leads to erroneous computations for the
holdsAt conditions that require cyclic processing. Therefore, our compiler is
correct if it translates a holdsAt condition into holdsAtCyclic iff this condition
requires cyclic processing.

The proposed compiler is sound, meaning that every holdsAt condition
in a rule of an event description that is compiled into holdsAtCyclic requires
indeed cyclic processing. In other words, soundness implies that no holdsAt
condition that does not require cyclic processing is identified by our com-
piler as requiring such processing, i.e., our compiler does not idenify a ‘false
positive’. Moreover, our compiler is complete in the sense that every holdsAt
condition in a rule of an event description that requires cyclic processing is

22

compiled into holdsAtCyclic. In other words, completeness implies that there
is no holdsAt condition that requires cyclic processing, but is not identified
by our compiler as requiring such processing, which would constitute a ‘false
negative’. In the following, we prove that our compiler is correct, i.e., sound
and complete. We start with two corollaries of our definition for FVP level in
RTECfl (Definition 10). First, according to Definition 10, two FVPs with the
same fluent, such as F =V and F =V ′, where V ̸=V ′, have the same level
as the vertex of the contracted fluent dependency graph that corresponds
to the SCC of the fluent dependency graph that includes vertex vF . Thus,
F =V and F =V ′ have the same level.
Corollary 1. Based on Definition 10, FVPs with the same fluent have the
same level. △

Second, consider a rule r that has FVP F =V in its head and condi-
tion holdsAt(F ′ =V ′,T) in its body. Based on Definition 3, there is edge
(vF ′ =V ′ , vF =V) in the dependency graph. Considering the corresponding
fluent dependency graph, there are two options, i.e., vertices vF ′ and vF are
either in the same SCC or in different SCCs of the fluent dependency graph.
In the former case, according to Definition 10, F =V and F ′ =V ′ have the
same level. In the latter case, suppose that vF ′ and vF are in SCCs S ′ and S ,
respectively. Since we have edge (vF ′ =V ′ , vF =V) in the dependency graph,
there is edge (vS ′ , vS) in the contracted fluent dependency graph, which is im-
plies that F =V has a higher level than F ′=V ′ (Definition 10). Therefore,
the level of F =V is greater or equal to the level of F ′=V ′.
Corollary 2. Consider a rule r that has FVP F =V in its head and a
holdsAt(F ′ =V ′,T) condition in its body. Based on Definition 10, the level
of F =V is greater or equal to the level of F ′=V ′. △

We start by proving that our compiler is sound, and then proceed to a
proof of completeness.
Proposition 3 (Soundness). Every holdsAt condition in a rule of an event
description that is compiled into holdsAtCyclic requires cyclic processing. ♦

Proof. Consider an event description with a rule r , having FVP F =V in
its head and a holdsAt(F ′=V ′,T) condition in its body, where F and F ′

are different fluents. Suppose that, given this event description as input,
Algorithm 1 replaces condition holdsAt(F ′ =V ′,T) of rule r with condition
holdsAtCyclic(F ′=V ′,T). It suffices to prove that it is possible for an execu-
tion of RTECfl to reach this condition of rule r at a time when the intervals

23

of F ′=V ′ are not present in the cache.
The dependency of F =V on F ′=V ′ that is described in rule r leads

to edge (vF ′ =V ′ , vF =V) in the dependency graph (Definition 3) and edge
(vF ′ , vF) in the fluent dependency graph (Definition 8). Moreover, since
condition holdsAt(F ′=V ′,T) of rule r has been replaced with condition
holdsAtCyclic(F ′=V ′,T), it holds that FVPs F=V and F ′=V ′ have the
same level (see lines 6–7 of Algorithm 1). Therefore, based on Definition 10,
the vertices vF and vF ′ of the fluent dependency graph of the event descrip-
tion are in the same SCC, which implies that there is a path from vertex vF
to vertex vF ′ in the fluent dependency graph. As a result, there are some
values V0 and V ′

0 for fluents F and F ′ such that there is a path from vertex
vF =V0 to vertex vF ′ =V ′

0
in the dependency graph (see Definition 8). Based

on Corollary 1, FVPs F =V0 and F ′ =V ′
0 have the same level as FVPs

F =V and F ′=V ′. Thus, due to the bottom-up processing order we follow,
RTECfl may start processing any one of the FVPs F ′ =V ′, F =V , F ′=V ′

0

and F =V0 , while the remaining ones have not been processed yet.
Suppose that RTECfl starts by processing F ′ =V ′, as an attempt to

compute and cache the intervals of F ′=V ′ before processing rule r . In order
to compute the terminations of F ′ =V ′, we have to compute the initiations
of F ′=V ′

0 , which, based on the path from vertex vF =V0 to vertex vF ′ =V ′
0

in the dependency graph, depend on F =V0 . Subsequently, in order to
evaluate whether F =V0 holds, we need to compute the initiations and the
terminations of F =V0 . These terminations of F =V0 include the initiations
of F =V . In order to process F=V , we need to evaluate rule r , whose body
includes condition holdsAtCyclic(F ′ =V ′,T). In the aforementioned scenario,
holdsAtCyclic(F ′=V ′,T) is invoked at a time when the intervals of F ′=V ′

are not present in the cache, proving the proposition.

Proposition 4 (Completeness). Every holdsAt condition in a rule of an event
description that requires cyclic processing is compiled into holdsAtCyclic. ♦

Proof. Consider an event description containing a rule r that has FVP F =V
in its head and a holdsAt(F ′ =V ′,T) condition in its body. Suppose that,
given this event description as input, Algorithm 1 does not replace condition
holdsAt(F ′ =V ′,T) of rule r with condition holdsAtCyclic(F ′=V ′,T). It suf-
fices to prove that, when an execution of RTECfl reaches this condition of
rule r , the intervals of F ′ =V ′ are present in the cache.

Based on rule r , there is an edge pointing from vF ′ =V ′ to vF =V in
the dependency graph (Definition 3), which implies that there is a vertex

24

pointing from vF ′ to vF in the fluent dependency graph (Definition 8). We
first show that there is no path from vF to vF ′ in the fluent dependency
graph. Since we have not replaced condition holdsAt(F ′ =V ′,T) of rule r
with holdsAtCyclic(F ′=V ′,T), based on lines 6–7 of Algorithm 1, it holds
that FVPs F=V and F ′=V ′ do not have the same level. Thus, based on
Corollary 2, F=V has a higher level than F ′ =V ′. According to the defi-
nition of FVP level in RTECfl (Definition 10), this implies that the vertices
vF and vF ′ are in different SCCs of the fluent dependency graph. Therefore,
since the fluent dependency graph contains edge (vF ′ , vF), there is no path
from vertex vF to vertex vF ′ in the fluent dependency graph, as, in that case,
vF and vF ′ would have been in the same SCC. Based on Definition 8, this
implies that there is no FVP with fluent F that depends on an FVP with
fluent F ′. We will use this result to prove that condition holdsAt(F ′=V ′,T)
of r is always invoked at a time when the intervals of F ′ =V ′ are present in
the cache.

Since F ′ =V ′ has a lower level than F=V , RTECfl processes F ′=V ′

before F=V , by computing the initiations and the terminations of F ′=V ′.
Since there is no FVP with fluent F ′ that depends on an FVP with flu-
ent F , the initiatedAt and the terminatedAt rules of F ′ =V ′, as well as the
initiatedAt rules of any other FVP with fluent F ′, which imply the termina-
tion of F ′ =V ′, do not contain any condition that leads to the computation
of rule r . Therefore, it is possible to compute the initiations and the ter-
minations of F ′ =V ′ without rule r . This is always achieved by RTECfl

because F ′=V ′ is assigned a lower level than F=V , and is thus processed
before F=V . As a result, holdsAt(F ′=V ′,T) is always invoked at a time
when F ′ =V ′ has been processed and its intervals are present in the cache,
proving the proposition.

Propositions 3 and 4 demonstrate that our compiler is sound and com-
plete. Thus, our compiler is correct, i.e., it identifies, and translates into
holdsAtCyclic, the holdsAt conditions of an event description that may require
cyclic processing at run-time, and no other conditions.

6.2. Optimality
An event description generated by our compiler is holdsAt-optimal in the

following sense.
Definition 11 (holdsAt-optimal Event Description). We say that an event
description is holdsAt-optimal if replacing any holdsAtCyclic condition of the

25

event description with holdsAt leads to incorrect reasoning. ■

For the event descriptions generated by our compiler, holdsAt-optimality
follows directly from the soundness of the compiler (Proposition 3). Ac-
cording to this proposition, our compiler translates holdsAt(F ′ =V ′,T) into
holdsAtCyclic(F ′=V ′,T) only if this condition may be invoked at a time when
the intervals of F ′ =V ′ are not cached. Therefore, using holdsAt(F ′=V ′,T)
instead of holdsAtCyclic(F ′ =V ′,T) may lead to a situation where condition
holdsAt(F ′ =V ′,T) is invoked before having computed and cached the inter-
vals of F ′=V ′, which results in erroneous reasoning.
Corollary 3 (holdsAt-optimality of Compiled Event Descriptions). Given an
input event description without holdsAtCyclic conditions, Algorithm 1 returns
a holdsAt-optimal event description. ♦

Note that our compiler operates under the assumption that the input
event description does not contain holdsAtCyclic, i.e., the event description
developer is not expected to use this predicate.

We are interested in holdsAt-optimality because it implies that the event
description is minimal with respect to the use of holdsAtCyclic conditions. In
other words, holdsAt conditions, which are computed more efficiently than
their corresponding holdsAtCyclic counterparts [48], are used in the event de-
scription as much as possible, while guaranteeing reasoning correctness.

6.3. Complexity
Proposition 5 (Complexity of Compiler). The worst-case time complexity
of compiling an event description with nf fluents and nc holdsAt body condi-
tions is O(nf+nc). ♦

Proof. The first step of Algorithm 1 is to construct the contracted fluent
dependency graph of the input event description (see line 1). We start by
building its dependency graph. To do this, we need to inspect every holdsAt
condition in the event description, as each one corresponds to an edge of
the dependency graph (see Definition 3). This process requires nc steps,
where nc is the number of holdsAt conditions in the event description, and
thus has a cost of O(nc). Subsequently, we construct the fluent dependency
graph of the event description, which involves one iteration over the edges
of the dependency graph, as each one corresponds to an edge in the fluent
dependency graph (see Definition 8). In the worst case, we have one edge
in the dependency graph for each holdsAt condition in the event description,

26

and thus the cost of this step is O(nc). Afterwards, we contract the SCCs
of the fluent dependency graph, leading to the contracted fluent dependency
graph. We identify these SCCs using Tarjan’s algorithm [61] on the fluent
dependency graph. The complexity of this process is linear to the number of
vertices and to the number of edges in the fluent dependency graph, which are
bounded, respectively, by the number of fluents nf and the number of holdsAt
conditions nc in the event description (Definition 8). Thus, the cost of this
step is O(nf+nc). Therefore, the overall cost of constructing the contracted
fluent dependency graph of an event description is O(nf+3nc).

Subsequently, Algorithm 1 computes the levels of the FVPs in the event
description based on its contracted fluent dependency graph (line 2). To do
this, we compute a topological sort of the vertices in the contracted fluent de-
pendency graph using Kahn’s algorithm [37]. We employ a modified version
of this algorithm, where, at the time of adding a vertex v to the topologi-
cal ordering, we derive its level as the maximum level of the vertices with
outgoing edges pointing to v , plus 1 . The levels of these vertices have been
defined earlier in the procedure, since a topological sort orders the vertices
of an acyclic graph bottom-up. The cost of this algorithm is linear to the
number of vertices and to the number of edges in the contracted fluent de-
pendency graph, i.e., O(nf+nc). Finally, in lines 3–7, Algorithm 1 iterates
over each holdsAt condition in each rule of the event description. Thus, the
cost of these operations is O(nc).

Overall, the cost of our compiler is O(2nf+5nc), which, after simplifica-
tions, leads to a worst-case time complexity of O(nf+nc).

We tested the compiler of RTECfl on event descriptions from various
CER applications, including human activity recognition [6], city transport
management [7] and maritime situational awareness [53, 54]. Moreover, we
have used our compiler in applications that involve the monitoring of the
normative positions of agents in multi-agent systems, such as e-commerce [59]
and voting protocols [55]. In all cases, the compilation time amounted to a
few milliseconds, and thus we do not show these times here. The compiler is
available with the code of RTECfl

1.

7. Experimental Evaluation

7.1. Experimental Setup
We evaluated RTECfl on event descriptions that are not supported by

RTEC◦. We employed an event description for human activity recognition,

27

trawling(Vessel)=ready
trawlingSpeed(Vessel)=true

trawlingMovement(Vessel)=true
trawling(Vessel)=ongoing

Figure 4: Fragment of the dependency graph of our event description for maritime situa-
tional awareness.

including rules (2)–(15), and an event description for maritime situational
awareness, where FVPs are used to specify various types of dangerous, sus-
picious or illegal vessel activities, such as fishing in an environmentally pro-
tected area [54]. Our maritime event description cannot be processed by
RTEC◦ because it includes the following rules:

initiatedAt(trawling(Vessel)= ready , T)←
happensAt(entersArea(Vessel , fishingArea), T),
vesselType(Vessel , fishingVessel).

(16)

initiatedAt(trawlingSpeed(Vessel)= true, T)←
happensAt(velocity(Vessel , Speed), T),
isTrawlingSpeed(Speed),
holdsAt(trawling(Vessel)= ready , T).

(17)

initiatedAt(trawlingMovement(Vessel)= true, T)←
happensAt(changeInHeading(Vessel), T),
holdsAt(trawling(Vessel)= ready , T).

(18)

initiatedAt(trawling(Vessel)= ongoing , T)←
happensAt(movementChange(Vessel), T),
holdsAt(trawlingSpeed(Vessel), T),
holdsAt(trawlingMovement(Vessel), T).

(19)

Rules (16)–(19) constitute a partial specification for the fishing activity ‘trawl-
ing’. Rule (16) states that a vessel is ready to perform this fishing activity if
it is a fishing vessel and it has entered a fishing area. Rule (17) determines
when a vessel sails at a speed that is expected for trawling, while rule (18) is
used to denote the time periods during which the vessel is performing con-
secutive turns, as is typical when trawling. Both these rules require that the
vessel is ready for trawling, i.e., trawling(Vessel)= ready holds. Rule (19)
states that a trawling activity is ongoing when the vessel is sailing at a speed
and with a direction that is typical for trawling.

Figure 4 depicts a fragment of the dependency graph of our mairitime

28

event description that captures the dependencies in rules (16)–(19). Follow-
ing these dependencies and the definition of FVP level in RTEC◦ (Definition
7), FVPs trawling(Vessel)= ready and trawling(Vessel)= ongoing have dif-
ferent levels. This is because trawling(Vessel)= ongoing depends on FVPs
trawlingSpeed(Vessel)= true and trawlingMovement(Vessel)= true which in
turn depend on trawling(Vessel)= ready . As a result, based on Defini-
tion 7, rules (16)–(19) specify two FVPs with the same fluent and differ-
ent levels, and thus are not supported in RTEC◦. In contrast, RTECfl sup-
ports rules (16)–(19); following Definition 10, FVPs trawling(Vessel)= ready ,
trawlingSpeed(Vessel)= true, trawlingMovement(Vessel)= true and
trawling(Vessel)= ongoing are assigned the same level, and are thus han-
dled by the cycle processing module of RTECfl .

For human activity recognition, we used synthetic datasets produced by
a custom generator via simulating scenarios where multiple people move
around in a bounded area, and may engage in meeting activities. For mar-
itime situational awareness, we employed an event stream that was derived
by processing Automatic Identification System (AIS) signals, containing in-
formation about vessels’ location, speed and heading. We used a publicly
available dataset2 including 18M AIS signals, emitted by 5K vessels sailing
around the port of Brest, France, between October 2015–March 2016.

We compared RTECfl with jRECrbt, i.e., an implementation of the ‘Re-
active Event Calculus’ [49] that employs indexing for manipulating lists of
events and FVP intervals efficiently [29], and Fusemate, a stream reason-
ing framework that integrates the Event Calculus with a description logic
in logic programming [11]. We ran RTECfl using SWI-9.2 Prolog, jRECrbt

using Java OpenJDK 18, and Fusemate using Scala 2.13, with a time limit
of 30 minutes. We used a single core of a desktop PC running Ubuntu 22,
with Intel Core i7-4770 CPU @3.40GHz and 16GB RAM.

7.2. Experimental Results
Our first set of experiments compared RTECfl , jRECrbt and Fusemate on

the task of detecting the composite activities in human activity recognition.
We used human activity recognition datasets whose size ranged from 400 to
3200 events. Figure 5 (left) presents the reasoning times of RTECfl , jRECrbt

and Fusemate on these datasets. Our results show that RTECfl was able to

2https://zenodo.org/records/1167595

29

https://zenodo.org/records/1167595

400 800 1600 3200
1

101
102
103
104
105
106
107

Number of events

R
e
a
so

n
in
g
ti
m
e
(m

s)

2h
6K
3K

4h
12K
5K

8h
24K
7K

16h
48K
13K

0

0.5

1

1.5

Window size

R
e
a
so

n
in
g
ti
m
e
(s
e
c
)

Fusemate jRECrbt RTECfl

Figure 5: Stream reasoning in human activity recognition (left), and in maritime situa-
tional awareness (right). The horizontal axis of the right diagram shows the size of stream
in terms of hours (top), number of input events (middle) and number of computed FVP
intervals (bottom).

compute the maximal intervals of FVPs corresponding to composite human
activities, such as movement(P1 ,P2)= abrupt_gestures , in a few millisec-
onds, while jRECrbt and Fusemate required much more time to produce the
same results. In our most demanding case where 3200 input events needed
to be processed, RTECfl required about 10 milliseconds to compute all com-
posite activities in the dataset, while jRECrbt needed about 3 minutes to
complete the same task, and we terminated the execution of Fusemate early,
as it lasted for more than 30 minutes. Contrary to RTECfl , jRECrbt and
Fusemate do not use incremental caching to process FVP hierarchies with
cyclic dependencies, leading to much less efficient reasoning compared to
RTECfl .

In our second set of experiments, we instructed RTECfl to detect instances
of composite maritime activities in our maritime dataset. We did not include
jRECrbt and Fusemate in these experiments because they do scale on our
maritime dataset due to its volume. We ran RTECfl using windows, i.e.,
finite chunks of the input event stream that are being processed sequentially
by RTECfl , of increasing size, spanning from 2 hours to 16 hours. Figure 5
(right) depicts the average reasoning times of RTECfl per window. For the
largest window size spanning 16 hours, including, on average, 48 thousand
input events, RTECfl was able to compute an average of 13 thousand maximal
intervals for FVPs corresponding to composite maritime activities. These
results demonstrate that it may be possible to use RTECfl at scale, on event

30

streams stemming from demanding real-world applications.

8. Discussion

We proposed RTECfl , an extension of RTEC◦, which detects composite
activities based on their Event Calculus definitions, in order to support arbi-
trary such definitions. We described the syntax and the semantics of RTECfl ,
demonstrating that activity specifications in RTECfl are locally stratified
logic programs. Afterwards, we proposed a compiler for RTECfl , identifying
the conditions of activity definitions that may be evaluated with an efficient
cache operation, without sacrificing correctness, with the goal of improving
reasoning efficiency at run-time. We proved the correctness of our compiler
and outlined its time complexity. Moreover, we demonstrated that a set of
activity definitions generated by our compiler is optimal, i.e., RTECfl does
not perform any redundant computations when reasoning with such a set
of definitions. We evaluated RTECfl empirically on synthetic and real event
streams from human activity recognition and maritime situational awareness,
and compared it with two state-of-the-art Event Calculus-based frameworks,
demonstrating the high reasoning efficiency and scalability of RTECfl .

RTECfl follows RTEC◦ and processes FVPs in ascending FVP level or-
der. When processing a rule that includes a holdsAtCyclic(F ′ =V ′,T) con-
dition, RTECfl computes the changes in the value of F ′ between Tleq and
T , where Tleq is the last time-point before T where the truth value of
holdsAt(F ′ =V ′,Tleq) has been evaluated and cached. In the worst-case, the
cost of this process is O(ωk), where ω is the size of the window and k is the
cost of computing whether an FVP is initiated or terminated at a given time-
point (see [7] for an estimation of k). This is the same incremental caching
technique as the one used in RTEC◦, thus yielding the same cost [48]. In
the case of a holdsAt(F ′ =V ′,T) condition, RTECfl retrieves the maximal
intervals of F ′ =V ′ from its cache and checks whether T belongs to one of
the retrieved intervals. Since the cached intervals are temporally sorted, this
is achieved with a binary search, while the number of cached intervals of
F ′=V ′ is bounded by ω. Therefore, the cost of an interval retrieval opera-
tion in RTECfl is O(log(ω)), which is the same as the cost of this operation
in RTEC◦. As a result, RTECfl yields the same worst-case time complexity
as RTEC◦, while supporting a wider range of temporal specifications. By fol-
lowing Definition 10 for FVP level, RTECfl reasons with incremental caching

31

only when it is necessary, i.e., only when the required intervals may not be
present in the cache. The code of RTECfl is publicly available1.

In the future, we aim to employ Large Language Models (LLM)s for
compiling natural language to RTECfl event descriptions. The reasoning
abilities of LLMs, particularly in multi-step logical reasoning tasks, remain
constrained [34]. Such reasoning tasks become even more demanding when
we need to reason over sequences of events that evolve over time, like, e.g.,
streams of vessel position signals. However, LLMs are increasingly able to
generate formal language expressions, such as SQL queries [31], Answer Set
Programming (ASP) specifications [35], and First-Order Logic formula [18],
based on natural language descriptions of these expressions. In [41, 40] we
presented an initial version of a prompting technique with which a domain
expert, such as an expert from the maritime domain, may generate RTEC
activity definitions with the use of LLMs. In the future, we will refine this
technique in order to minimise further the effort of domain experts, as well
as improve the responses of LLMs in an automated way with the use of the
compiler of RTEC.

Acknowledgements

This work was supported by the EU-funded CREXDATA project (No
101092749).

References

[1] Aghasadeghi, A., den Bussche, J.V., Stoyanovich, J., 2024. Temporal
graph patterns by timed automata. VLDB J. 33, 25–47.

[2] Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G., 2017. Probabilis-
tic complex event recognition: A survey. Commun. ACM 50, 71:1–71:31.

[3] Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N., 2012. Stream reason-
ing and complex event processing in ETALIS. Semantic Web 3, 397–407.

[4] Arasu, A., Babu, S., Widom, J., 2006. The CQL continuous query
language: semantic foundations and query execution. VLDB J. 15, 121–
142.

32

[5] Arias, J., Carro, M., Chen, Z., Gupta, G., 2022. Modeling and reasoning
in event calculus using goal-directed constraint answer set programming.
Theory Pract. Log. Program. 22, 51–80.

[6] Artikis, A., Sergot, M.J., Paliouras, G., 2010. A logic programming
approach to activity recognition, in: EIMM Workshop in MM, pp. 3–8.

[7] Artikis, A., Sergot, M.J., Paliouras, G., 2015. An event calculus for
event recognition. IEEE Trans. Knowl. Data Eng. 27, 895–908.

[8] Artikis, A., Zissis, D. (Eds.), 2021. Guide to Maritime Informatics.
Springer.

[9] Awad, A., Tommasini, R., Langhi, S., Kamel, M., Valle, E.D., Sakr, S.,
2022. D2ia: User-defined interval analytics on distributed streams. Inf.
Syst. 104, 101679.

[10] Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C., 2006. A data
stream language and system designed for power and extensibility, in:
CIKM, pp. 337–346.

[11] Baumgartner, P., 2021. Combining event calculus and description logic
reasoning via logic programming, in: FroCoS, pp. 98–117.

[12] Bazoobandi, H.R., Beck, H., Urbani, J., 2017. Expressive stream rea-
soning with laser, in: ISWC, pp. 87–103.

[13] Beck, H., Dao-Tran, M., Eiter, T., 2018. LARS: A logic-based framework
for analytic reasoning over streams. Artif. Intell. 261, 16–70.

[14] Beck, H., Eiter, T., Folie, C., 2017. Ticker: A system for incremental
asp-based stream reasoning. Theory Pract. Log. Program. 17, 744–763.

[15] Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P., 2012.
Reactive event calculus for monitoring global computing applications,
in: Logic Programs, Norms and Action - Essays in Honor of Marek J.
Sergot on the Occasion of His 60th Birthday, pp. 123–146.

[16] Brandt, S., Kalayci, E.G., Ryzhikov, V., Xiao, G., Zakharyaschev, M.,
2018. Querying log data with metric temporal logic. J. Artif. Intell. Res.
62, 829–877.

33

[17] Bromuri, S., Urovi, V., Stathis, K., 2010. icampus: A connected campus
in the ambient event calculus. Int. J. Ambient Comput. Intell. 2, 59–65.

[18] Brunello, A., Ferrarese, R., Geatti, L., Marzano, E., Montanari, A.,
Saccomanno, N., 2024. Evaluating llms capabilities at natural lan-
guage to logic translation: A preliminary investigation, in: Porello,
D., Vinci, C., Zavatteri, M. (Eds.), Short Paper Proceedings of the
6th International Workshop on Artificial Intelligence and Formal Ver-
ification, Logic, Automata, and Synthesis, OVERLAY 2024, Bolzano,
Italy, November 28-29, 2024, CEUR-WS.org. pp. 103–110. URL: https:
//ceur-ws.org/Vol-3904/paper13.pdf.

[19] Bucchi, M., Grez, A., Quintana, A., Riveros, C., Vansummeren, S.,
2022. CORE: a complex event recognition engine. Proc. VLDB Endow.
15, 1951–1964.

[20] Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari,
J., 2021. I-dlv-sr: A stream reasoning system based on I-DLV. Theory
Pract. Log. Program. 21, 610–628.

[21] Cervesato, I., Montanari, A., 2000. A calculus of macro-events: Progress
report, in: TIME, pp. 47–58.

[22] Chaudet, H., 2006. Extending the event calculus for tracking epidemic
spread. Artif. Intell. Medicine 38, 137–156.

[23] Chittaro, L., Montanari, A., 1996. Efficient temporal reasoning in the
cached event calculus. Comput. Intell. 12, 359–382.

[24] Clark, K.L., 1977. Negation as failure, in: Logic and Data Bases, Ple-
mum Press. pp. 293–322.

[25] Cugola, G., Margara, A., 2010. TESLA: A formally defined event spec-
ification language, in: DEBS, ACM. pp. 50–61.

[26] Cugola, G., Margara, A., 2012. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv. 44.

[27] Dousson, C., Maigat, P.L., 2007. Chronicle recognition improvement
using temporal focusing and hierarchisation, in: IJCAI, pp. 324–329.

34

https://ceur-ws.org/Vol-3904/paper13.pdf
https://ceur-ws.org/Vol-3904/paper13.pdf

[28] Eiter, T., Ogris, P., Schekotihin, K., 2019. A distributed approach to
LARS stream reasoning (system paper). Theory Pract. Log. Program.
19, 974–989.

[29] Falcionelli, N., Sernani, P., de la Torre, A.B., Mekuria, D.N., Calvaresi,
D., Schumacher, M., Dragoni, A.F., Bromuri, S., 2019. Indexing the
event calculus: Towards practical human-readable personal health sys-
tems. Artif. Intell. Medicine 96, 154–166.

[30] Galton, A., Augusto, J.C., 2002. Two approaches to event definition, in:
DEXA, pp. 547–556.

[31] Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., Zhou, J.,
2024. Text-to-sql empowered by large language models: A benchmark
evaluation. Proc. VLDB Endow. 17, 1132–1145.

[32] Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., Garofalakis,
M.N., 2020. Complex event recognition in the big data era: a survey.
VLDB J. 29, 313–352.

[33] Grez, A., Riveros, C., Ugarte, M., Vansummeren, S., 2021. A formal
framework for complex event recognition. ACM Trans. Database Syst.
46, 16:1–16:49.

[34] Ishay, A., Lee, J., 2025. LLM+AL: bridging large language models and
action languages for complex reasoning about actions, in: Walsh, T.,
Shah, J., Kolter, Z. (Eds.), AAAI-25, Sponsored by the Association for
the Advancement of Artificial Intelligence, February 25 - March 4, 2025,
Philadelphia, PA, USA, AAAI Press. pp. 24212–24220. URL: https:
//doi.org/10.1609/aaai.v39i23.34597, doi:10.1609/AAAI.V39I23.
34597.

[35] Ishay, A., Yang, Z., Lee, J., 2023. Leveraging large language models to
generate answer set programs, in: KR, pp. 374–383.

[36] Kafali, Ö., Romero, A.E., Stathis, K., 2017. Agent-oriented activity
recognition in the event calculus: An application for diabetic patients.
Comput. Intell. 33, 899–925.

[37] Kahn, A.B., 1962. Topological sorting of large networks. Commun.
ACM 5, 558–562.

35

https://doi.org/10.1609/aaai.v39i23.34597
https://doi.org/10.1609/aaai.v39i23.34597
http://dx.doi.org/10.1609/AAAI.V39I23.34597
http://dx.doi.org/10.1609/AAAI.V39I23.34597

[38] Katzouris, N., Paliouras, G., Artikis, A., 2023. Online learning proba-
bilistic event calculus theories in answer set programming. Theory Pract.
Log. Program. 23, 362–386.

[39] Körber, M., Glombiewski, N., Morgen, A., Seeger, B., 2021. Tpstream:
low-latency and high-throughput temporal pattern matching on event
streams. Distributed Parallel Databases 39, 361–412.

[40] Kouvaras, A., Mantenoglou, P., Artikis, A., . Prompting llms for the
run-time event calculus, in: 32nd International Symposium on Temporal
Representation and Reasoning, TIME 2025.

[41] Kouvaras, A., Mantenoglou, P., Artikis, A., 2025. Generating activ-
ity definitions with large language models, in: Simitsis, A., Kemme,
B., Queralt, A., Romero, O., Jovanovic, P. (Eds.), Proceedings 28th
International Conference on Extending Database Technology, EDBT
2025, Barcelona, Spain, March 25-28, 2025, OpenProceedings.org. pp.
1005–1013. URL: https://doi.org/10.48786/edbt.2025.83, doi:10.
48786/EDBT.2025.83.

[42] Kowalski, R.A., Sergot, M.J., 1986. A logic-based calculus of events.
New Gener. Comput. 4, 67–95.

[43] Laptev, N., Mozafari, B., Mousavi, H., Thakkar, H., Wang, H., Zeng,
K., Zaniolo, C., 2016. Extending relational query languages for data
streams, in: Data Stream Management. Springer, pp. 361–386.

[44] Lee, J., Palla, R., 2012. Reformulating the situation calculus and the
event calculus in the general theory of stable models and in answer set
programming. J. Artif. Intell. Res. 43, 571–620.

[45] Li, M., Mani, M., Rundensteiner, E.A., Lin, T., 2011. Complex event
pattern detection over streams with interval-based temporal semantics,
in: DEBS, ACM. pp. 291–302.

[46] Mantenoglou, P., Artikis, A., 2024. Extending the range of tempo-
ral specifications of the run-time event calculus, in: Sala, P., Sioutis,
M., Wang, F. (Eds.), 31st International Symposium on Temporal Rep-
resentation and Reasoning, TIME 2024, October 28-30, 2024, Mont-
pellier, France, Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

36

https://doi.org/10.48786/edbt.2025.83
http://dx.doi.org/10.48786/EDBT.2025.83
http://dx.doi.org/10.48786/EDBT.2025.83

pp. 6:1–6:14. URL: https://doi.org/10.4230/LIPIcs.TIME.2024.6,
doi:10.4230/LIPICS.TIME.2024.6.

[47] Mantenoglou, P., Kelesis, D., Artikis, A., 2023. Complex event recogni-
tion with allen relations, in: KR, pp. 502–511.

[48] Mantenoglou, P., Pitsikalis, M., Artikis, A., 2022. Stream reasoning
with cycles, in: KR, pp. 544–553.

[49] Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.,
2013. Monitoring business constraints with the event calculus. ACM
Trans. Intell. Syst. Technol. 5, 17:1–17:30.

[50] Paschke, A., 2005. ECA-RuleML: An Approach combining ECA Rules
with Temporal Interval-Based KR Event/Action Logics and Transac-
tional Update Logics. Technical Report 11. TU München.

[51] Paschke, A., 2006. Eca-ruleml: An approach combining ECA rules with
temporal interval-based KR event/action logics and transactional up-
date logics. CoRR abs/cs/0610167.

[52] Paschke, A., Bichler, M., 2008. Knowledge representation concepts for
automated SLA management. Decis. Support Syst. 46, 187–205.

[53] Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis,
Y., Pelekis, N., 2015. Event recognition for maritime surveillance, in:
EDBT, pp. 629–640.

[54] Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., Jousselme, A.,
2019. Composite event recognition for maritime monitoring, in: DEBS,
pp. 163–174.

[55] Pitt, J., Kamara, L., Sergot, M., Artikis, A., 2006. Voting in multi-agent
systems. Comput. J. 49, 156–170.

[56] Poppe, O., Lei, C., Rundensteiner, E.A., Maier, D., 2019. Event trend
aggregation under rich event matching semantics, in: SIGMOD, pp.
555–572.

[57] Przymusinski, T.C., 1988. On the declarative semantics of deductive
databases and logic programs, in: Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, pp. 193–216.

37

https://doi.org/10.4230/LIPIcs.TIME.2024.6
http://dx.doi.org/10.4230/LIPICS.TIME.2024.6

[58] Shahid, N.S., O’Keeffe, D., Stathis, K., 2023. A knowledge representa-
tion framework for evolutionary simulations with cognitive agents, in:
ICTAI, IEEE. pp. 361–368.

[59] Sirbu, M., 1997. Credits and debits on the Internet. IEEE Spectrum
34, 23–29.

[60] Srinivasan, A., Bain, M., Baskar, A., 2022. Learning explanations for
biological feedback with delays using an event calculus. Mach. Learn.
111, 2435–2487.

[61] Tarjan, R.E., 1972. Depth-first search and linear graph algorithms.
SIAM J. Comput. 1, 146–160.

[62] Terry, D.B., Goldberg, D., Nichols, D.A., Oki, B.M., 1992. Continuous
queries over append-only databases, in: SIGMOD, pp. 321–330.

[63] Tsilionis, E., Artikis, A., Paliouras, G., 2022. Incremental event calculus
for run-time reasoning. J. Artif. Intell. Res. 73, 967–1023.

[64] Walega, P.A., Kaminski, M., Grau, B.C., 2019. Reasoning over stream-
ing data in metric temporal datalog, in: AAAI, pp. 3092–3099.

[65] Walega, P.A., Kaminski, M., Wang, D., Grau, B.C., 2023. Stream rea-
soning with datalogmtl. J. Web Semant. 76, 100776.

[66] White, W.M., Riedewald, M., Gehrke, J., Demers, A.J., 2007. What is
"next" in event processing?, in: PODS, pp. 263–272.

[67] Zaniolo, C., 2012. Logical foundations of continuous query languages
for data streams, in: Datalog in Academia and Industry.

[68] Zervoudakis, P., Kondylakis, H., Spyratos, N., Plexousakis, D., 2021.
Query rewriting for incremental continuous query evaluation in HIFUN.
Algorithms 14, 149.

[69] Zhao, B., van der Aa, H., Nguyen, T.T., Nguyen, Q.V.H., Weidlich,
M., 2021. EIRES: efficient integration of remote data in event stream
processing, in: SIGMOD, pp. 2128–2141.

38

