
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Reasoning over Complex Temporal Specifications and
Noisy Data Streams

Periklis Mantenoglou

ATHENS

SEPTEMBER 2024

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συλλογιστική πάνω σε Πολύπλοκες Χρονικές
Προδιαγραφές και Θορυβώδεις Ροές Δεδομένων

Περικλής Μαντένογλου

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2024

PhD THESIS

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Periklis Mantenoglou

SUPERVISOR: Panagiotis Stamatopoulos, Assistant Professor, NKUA

THREE-MEMBER ADVISORY COMMITTEE:
Panagiotis Stamatopoulos, Assistant Professor, NKUA
Alexander Artikis, Associate Professor, University of Piraeus
Georgios Paliouras, Researcher A, NCSR “Demokritos”

SEVEN-MEMBER EXAMINATION COMMITTEE

Panagiotis Stamatopoulos, Alexander Artikis,

Assistant Professor, NKUA Associate Professor, Univer-
sity of Piraeus

Georgios Paliouras, Dimitrios Gunopulos,
Researcher A, NCSR “Demokritos” Professor, NKUA

Manolis Koubarakis, Panagiotis Rondogiannis,
Professor, NKUA Professor, NKUA

Kostas Stathis,
Professor, Royal Holloway University of
London

Examination Date: September 10, 2024

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συλλογιστική πάνω σε Πολύπλοκες Χρονικές Προδιαγραφές και Θορυβώδεις Ροές
Δεδομένων

Περικλής Μαντένογλου

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής,
ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής, ΕΚΠΑ
Αλέξανδρος Αρτίκης, Αναπληρωτής Καθηγητής, Πανεπιστήμιο Πειραιά
Γεώργιος Παλιούρας, Ερευνητής Α, ΕΚΕΦΕ «Δημόκριτος»

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Παναγιώτης Σταματόπουλος, Αλέξανδρος Αρτίκης,

Επίκουρος Καθηγητής, ΕΚΠΑ Αναπληρωτής Καθηγητής,
Πανεπιστήμιο Πειραιά

Γεώργιος Παλιούρας, Δημήτριος Γουνόπουλος,
Ερευνητής Α, ΕΚΕΦΕ «Δημόκριτος» Καθηγητής, ΕΚΠΑ

Μανόλης Κουμπαράκης, Παναγιώτης Ροντογιάννης,
Καθηγητής, ΕΚΠΑ Καθηγητής, ΕΚΠΑ

Κώστας Στάθης,
Καθηγητής, Royal Holloway University of
London

Ημερομηνία Εξέτασης: 10 Σεπτεμβρίου 2024

ABSTRACT

Contemporary applications commonly demand the detection of ‘situations of interest’ in
real-time and with minimal latency. In maritime situational awareness, e.g., it is crucial
to identify and report vessel behaviours that may indicate dangerous, illegal or environ-
mentally hazardous activities in a timely manner. Monitoring situations of interest is chal-
lenging, as large, high-velocity streams of data are being generated continuously, and it
is not feasible to store these streams in memory and process them at a later time. Stream
reasoning involves the real-time detection of critical situations by reasoning over large
volumes of incrementally-arriving, symbolic data, typically termed as ‘events’. In order to
support contemporary applications, a stream reasoning system needs to employ efficient
reasoning algorithms that are tailored for the streaming setting, a highly expressive pattern
specification language with a formal and declarative semantics, as well as techniques for
handling noise and uncertainty. This thesis is motivated by the absence of a framework
with all the aforementioned features, and aims at extending state-of-the-art computational
frameworks in order to support stream reasoning effectively. We focus on frameworks that
employ the Event Calculus, a logic programming formalism for representing events and
reasoning about their effects over time. The Event Calculus exhibits a formal, declarative
semantics, while supporting both instantaneous and durative events, hierarchical and re-
lational event specifications, temporal persistence and background knowledge. RTEC is
a computational framework that is based on the Event Calculus and includes several op-
timisation techniques for stream reasoning. We propose three extensions of RTEC, i.e.,
RTEC◦, RTEC→ and RTECA, supporting, respectively, temporal specifications with cyclic
dependencies, events with delayed effects and situations specified using the relations of
Allen’s interval algebra. Moreover, we study PIEC, i.e., an Event Calculus-based system
for probabilistic event recognition, and present oPIEC, i.e., an extension of PIEC for rea-
soning over noisy event streams. In order to support large data streams, we propose two
bounded-memory versions of oPIEC. All of our proposed frameworks have a formal se-
mantics and feature optimised stream reasoning algorithms that have been assessed both
theoretically and empirically, using large, real and synthetic data streams, in experiments
that included comparisons with state-of-the-art frameworks. Our analysis demonstrates
that RTEC◦, RTEC→ and RTECA are suitable for stream reasoning with complex temporal
specifications, while the variants of oPIEC exhibit high predictive accuracy and reasoning
efficiency when reasoning over noisy data streams.

SUBJECT AREA: Knowledge Representation and Reasoning

KEYWORDS: stream reasoning, Event Calculus, logic programming, probabilistic logic
programming, uncertainty, temporal pattern matching, composite event recognition

ΠΕΡΙΛΗΨΗ

Οι σύγχρονες εφαρμογές απαιτούν την ανίχνευση «καταστάσεων ενδιαφέροντος» σε
πραγματικό χρόνο και με ελάχιστη καθυστέρηση. Στην επιτήρηση ναυτιλιακών
δραστηριοτήτων, π.χ., είναι σημαντικό να εντοπίζονται και να αναφέρονται εγκαίρως
συμπεριφορές πλοίων που μπορεί να υποδεικνύουν επικίνδυνες, παράνομες ή
περιβαλλοvτικά επιβλαβείς δραστηριότητες. Η επιτήρηση καταστάσεων ενδιαφέροντος
αποτελεί πρόκληση, καθώς μεγάλες ροές δεδομένων υψηλής ταχύτητας
παράγονται συνεχώς, ενώ δεν είναι εφικτό να αποθηκεύσουμε αυτά τα δεδομένα
και να τα επεξεργαστούμε σε επόμενο χρόνο. Η συλλογιστική πάνω σε ροές
δεδομένων περιλαμβάνει την ανίχνευση κρίσιμων καταστάσεων σε πραγματικό
χρόνο, εφαρμόζοντας τεχνικές συλλογιστικής πάνω σε μεγάλους όγκους από
σταδιακά παραγόμενα, συμβολικά δεδομένα, που συνήθως ονομάζονται «γεγονότα».
Προκειμένου να υποστηρίζει σύγχρονες εφαρμογές, ένα σύστημα συλλογιστικής σε ροές
δεδομένων πρέπει να χρησιμοποιεί αποτελεσματικούς αλγόριθμους συλλογιστικής
που είναι προσαρμοσμένοι σε περιβάλλοντα ροών δεδομένων, μια εξαιρετικά
εκφραστική γλώσσα προδιαγραφών προτύπων με τυπική και δηλωτική σημασιολογία,
καθώς και τεχνικές για τη διαχείριση του θορύβου και της αβεβαιότητας. Αυτή η
διατριβή παρακινείται από την απουσία ενός συστήματος που να διαθέτει όλα τα
προαναφερθέντα χαρακτηριστικά και στοχεύει στην επέκταση σύγχρονων υπολογιστικών
συστημάτων προκειμένου να χειρίζονται αποτελεσματικά εφαρμογές συλλογιστικής σε
ροές δεδομένων. Εστιάζουμε σε συστήματα που χρησιμοποιούν τον Λογισμό
Γεγονότων, έναν φορμαλισμό βασισμένο στο λογικό προγραμματισμό για την
αναπαράσταση γεγονότων και το συμπερασμό των συνεπειών τους με την πάροδο του
χρόνου. Ο Λογισμός Γεγονότων παρουσιάζει μια τυπική, δηλωτική σημασιολογία, ενώ
υποστηρίζει στιγμιαία και διαρκή γεγονότα, ιεραρχικές και σχεσιακές προδιαγραφές
γεγονότων, τη χρονική ανθεκτικότητα των συνεπειών των γεγονότων, καθώς και
βοηθητικές βάσεις γνώσης που προδιαγράφουν τον τομέα εφαρμογής. Το RTEC είναι
ένα σύστημα που βασίζεται στον Λογισμό Γεγονότων και περιλαμβάνει πολλές τεχνικές
βελτιστοποίησης για τη συλλογιστική σε ροές δεδομένων. Προτείνουμε τρεις επεκτάσεις
του RTEC, δηλαδή τα συστήματα RTEC◦, RTEC→ και RTECA, τα οποία υποστηρίζουν,
αντιστοίχως, χρονικές προδιαγραφές με κυκλικές εξαρτήσεις, γεγονότα με μελλοντικές
συνέπειες και καταστάσεις που ορίζονται μέσω των σχέσεων της άλγεβρας διαστημάτων
του Allen. Επιπλέον, μελετάμε το PIEC, δηλαδή ένα σύστημα βασισμένο στο Λογισμό
Γεγονότων για πιθανοτική αναγνώριση γεγονότων, και προτείνουμε το σύστημα oPIEC,
δηλαδή μια επέκταση του PIEC για συλλογιστική πάνω σε θορυβώδεις ροές δεδομενών.
Για να υποστηρίξουμε μεγάλες ροές δεδομένων, προτείνουμε δύο εκδόσεις του oPIEC με
περιορισμένη μνήμη. Όλα τα συστήματα που αναπτύξαμε έχουν τυπική σημασιολογία
και διαθέτουν βελτιστοποιημένους αλγόριθμους συλλογιστικής σε ροές δεδομένων που
έχουν αξιολογηθεί τόσο θεωρητικά όσο και εμπειρικά, χρησιμοποιώντας μεγάλες,
πραγματικές και συνθετικές ροές δεδομένων, σε πειράματα που περιλαμβάνουν
συγκρίσεις με σύγχρονα συστήματα. Η ανάλυσή μας φανερώνει πως τα συστήματα

RTEC◦, RTEC→ και RTECA είναι κατάλληλα για συλλογιστική πάνω σε ροές δεδομένων
με πολύπλοκες χρονικές προδιαγραφές, ενώ οι εκδόσεις του oPIEC επιτυγχάνουν υψηλή
ακρίβεια πρόβλεψης και ταχύτητα συλλογισμού όταν λειτουργούν πάνω σε θορυβώδεις
ροές δεδομένων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Αναπαράσταση Γνώσης και Συλλογιστική

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: συλλογιστική πάνω σε ροές δεδομένων, Λογισμός Γεγονότων, λογικός
προγραμματισμός, πιθανοτικός λογικός προγραμματισμός, ταίριασμα χρονικών μοτίβων,
αναγνώριση σύνθετων γεγονότων

ACKNOWLEDGEMENTS

Completing a PhD thesis may be a long and arduous task. At times, the final goal seems to
be miles ahead, creating anxiety and desperation in one’s mind. In the case of this thesis,
I was very lucky to have the constant support of my supervisors, colleagues, friends and
family. Their positive attitude, words of encouragement and irreplaceable company made
the task of completing this thesis not only doable, but also an exciting journey that made
up some of the most fruitful and cherished years of my life.

First and foremost, I would like to wholeheartedly thank my PhD supervisors. Dr. Alexan-
der Artikis is the head of the complex event recognition group at NCSR “Demokritos”, an
Associate Professor at the University of Piraeus and the main supervisor of this thesis.
Alexander has in-depth knowledge on the field of artificial intelligent and a unique talent
of apprehending and distinguishing the key aspects of an idea, based on my (sometimes
messy and incomplete) descriptions, in order to provide vital insights for the progress of
my work. Without his feedback and expertise, it would be impossible to complete this
thesis. Moreover, Alexander was extremely helpful with the preparation of the research
papers and presentations related to this thesis. His comments were always clear and
instructive, instilling a well-balanced amount of feedback, which, I believe, enhanced my
creativity and helped me improve. Alexander was my ‘academic teacher’, for which I am
grateful.

Dr. Giorgos Paliouras is the head of the AI Lab SKEL at NCSR “Demokritos”. Giorgos and
I had valuable discussions regarding the research directions of this thesis, in which Gior-
gos’s comprehensive knowledge regarding statistical-relational AI and composite event
recognition, and his willingness to share his knowledge, were crucial. Giorgos was always
supportive at every step of my research, taking the time to read my paper drafts, while be-
ing patient and considerate with my mistakes and providing acute feedback, which proved
indispensable for the progress of my work.

I would also like to thank Dr. Panagiotis Stamatopoulos (Assistant Professor at the Na-
tional and Kapodistrian University of Athens) for making this PhD thesis possible. While
working on my thesis, I had to opportunity to participate as an assistant in the Logic Pro-
gramming course given by Panagiotis Stamatopoulos, a rewarding experience that was
beneficial for my progress, as logic programming is at the core of my thesis. Panagio-
tis was always eager to help me in my role as a course assistant and very supportive
regarding all sorts of issues that came up as I progressed with my work.

I am also grateful to Professors Dimitrios Gunopulos, Manolis Koubarakis and Panagiotis
Rondogiannis of the National and Kapodistrian University of Athens and Professor Kostas
Stathis of Royal Holloway University of London for agreeing to take part in the seven-
member examination committee of this dissertation.

PhD theses typically require several years of work. Everyday life in the workplace nat-

urally affects the progress of a thesis, enhancing or hindering creativity and productiv-
ity, depending on the quality of the workplace. I was very lucky to be part of a positive
and encouraging working environment. My colleagues and I had interesting discussions
concerning research ideas, as well as conversations that took our minds off work, which
was vital for a stress-free and creative PhD experience. I am very thankful to Mano-
lis Pitsikalis, Elisavet Keramioti, Vasilis Stavropoulos, Manos Ntoulias, Nefeli Prokopaki-
Kostopoulou, Evangelia Santorinaiou, Alexandros Ntogramatzis, Alex Troupiotis, Giannis
Fikioris, Alexia Atsidakou and Leonidas Tsekouras. They were some of my colleagues
and friends whose company was irreplaceable.

My friends have been very supportive and encouraging in the last few years, always taking
the time to ask me how my dissertation is going. At times of paper rejections or research
complications, the kind words of my friends helped me get back on my feet and almost
single-handedly cured my anxiety and glass-half-empty attitude. Having good friends is
really an indispensable part of life. This is one of the main lessons I grasped in the years
of working towards this thesis.

Last, but certainly not least, I would like to thank, from the bottom of my heart, my parents,
Έφη and Γιάννης. My parents have been encouraging me to pursue my dreams ever since
my early school years, working hard and making sacrifices their whole lives to produce an
environment where this was even possible. Their warm, comforting words were essential
to keep me going, even when making progress seemed like a tremendous task in my
mind. For this reason, this dissertation is dedicated to my parents.

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Συνοπτική περιγραφή του διδακτορικού (5–8 σελίδες).

CONTENTS

1 INTRODUCTION 29
1.1 Motivation . 30

1.1.1 Stream Reasoning over Complex Temporal Specifications 31

1.1.2 Reasoning over Noisy Data Streams 32

1.1.3 Applications . 33

1.1.3.1 Composite Event Recognition 33

1.1.3.2 Multi-Agent Systems . 34

1.1.3.3 Biological Feedback Processes 34

1.2 Contributions . 36

1.2.1 Stream Reasoning over Complex Temporal Specifications 36

1.2.2 Reasoning over Noisy Data Streams 37

1.2.3 Publications . 37

1.3 Thesis Outline . 38

2 BACKGROUND: STREAM REASONING 39
2.1 Logic Programming Concepts . 39

2.2 The Event Calculus . 42

2.3 The Run-Time Event Calculus (RTEC) . 45

2.4 Allen’s Interval Algebra . 48

2.5 Literature Review . 49

3 STREAM REASONING OVER COMPLEX TEMPORAL SPECIFICATIONS 57
3.1 A Formal Account of RTEC . 57

3.2 RTEC◦: Reasoning over Specifications with Cyclic Dependencies 59

3.2.1 Motivation . 60

3.2.2 Semantics . 64

3.2.3 Reasoning . 65

3.2.4 Correctness and Complexity . 67

3.2.5 Discussion . 69

3.3 RTEC→: Reasoning over Streams of Events with Delayed Effects 70

3.3.1 Motivation . 70

3.3.2 Representation . 70

3.3.3 Semantics . 72

3.3.4 Reasoning . 76

3.3.5 Correctness and Complexity . 83

3.3.6 Discussion . 85

3.4 RTECA: Reasoning over Specifications with Allen Relations 85

3.4.1 Motivation . 86

3.4.2 Representation . 86

3.4.3 Semantics . 88

3.4.4 Reasoning . 89

3.4.5 Correctness and Complexity . 93

3.4.6 Discussion . 94

4 EXPERIMENTAL EVALUATION OF RTEC◦, RTEC→ AND RTECA 97
4.1 Experimental Setup . 97

4.1.1 Applications . 97

4.1.2 Competing Frameworks . 99

4.2 Experimental Results . 100

4.2.1 Stream Reasoning with RTEC◦ . 100

4.2.2 Stream Reasoning with RTEC→ . 103

4.2.3 Stream Reasoning with RTECA . 106

4.3 Discussion . 108

5 BACKGROUND: REASONING UNDER UNCERTAINTY 111
5.1 Probabilistic Logic Programming . 111

5.2 Probabilistic Event Calculus . 116

5.3 Probabilistic Interval-based Event Calculus 118

5.4 Literature Review . 121

6 REASONING OVER NOISY DATA STREAMS 129

6.1 Online Probabilistic Interval-based Event Calculus (oPIEC) 129

6.1.1 Support Set . 130

6.1.2 Interval Computation . 132

6.1.3 Correctness and Complexity . 135

6.2 oPIEC with Bounded Memory . 138

6.2.1 Support Set Maintenance with oPIECb 138

6.2.2 Support Set Maintenance with oPIECbd 140

6.2.3 Complexity of Support Set Maintenance 144

6.3 Discussion . 145

7 EXPERIMENTAL EVALUATION OF oPIEC 147
7.1 Experimental Setup . 147

7.2 Experimental Results . 151

7.3 Discussion . 157

8 SUMMARY AND FUTURE WORK 159
8.1 Summary . 159

8.2 Future Work . 161

ABBREVIATIONS - ACRONYMS 165

APPENDICES 166

A PROOFS FOR PROPOSITIONS OF CHAPTER 3: SEMANTICS 167
A.1 The Cycle-Sum Test . 167

A.2 Proof of Proposition 2 . 170

A.3 Proof of Proposition 5 . 171

A.4 Proof of Proposition 9 . 173

B PROOFS FOR PROPOSITIONS OF CHAPTER 3: CORRECTNESS AND COM-
PLEXITY 175
B.1 Proof of Proposition 3 . 175

B.2 Proof of Proposition 4 . 177

B.3 Proof of Proposition 6 . 179

B.4 Proof of Proposition 7 . 184

B.5 Proof of Lemma 1 . 185

B.6 Proof of Lemma 2 . 187

B.7 Proof of Proposition 10 . 189

C PROOFS FOR PROPOSITIONS OF CHAPTER 6 191
C.1 Proof of Proposition 11 . 191

C.2 Proof of Lemma 3 . 191

C.3 Proof of Lemma 4 . 192

C.4 Proof of Proposition 13 . 193

REFERENCES 206

LIST OF FIGURES

1.1 The feedback loops of immune response (left) and phage infection (right),
after [Srinivasan et al., 2022]. An edge from ‘x’ to ‘y’ with label ‘+n’ (resp. ‘-
n’), where n is a positive integer, expresses a positive (negative) interaction,
i.e., the value of y increases (decreases) by 1 at a specified time after the
value of x becomes greater or equal to n. 35

2.1 Interval manipulation constructs of RTEC. I1 , I2 and I3 (resp. Ic, Ii and Iu)
are input (output) lists of maximal intervals. 47

3.1 Dependency Graphs: voting (top) and NetBill (bottom). In order to sim-
plify the presentation, we omit the arguments of fluents, group FVPs with
the same conditions into a single node, and display a vertex vj as j . Cy-
cles are coloured red. Apart from the basic features of these protocols,
e.g., motions in voting and quotes for digital goods in NetBill, the specifi-
cations express the normative positions of the agents, such as institution-
alised power, permission and obligation, as well as sanctions/suspensions
for handling non-conformance with obligations and the performance of for-
bidden actions (see Section 1.1.3). 61

3.2 Future initiations expressed by fi(F =V ,F =V ′,R) in a streaming setting.
ω and qi denote the window size and the i -th query time. The black points
below ω represent the events of the stream. The events in the top (resp. bot-
tom) row lead to immediate initiations (terminations) of F =V (e.g., rules
(3.14) and (3.15)). Arrows facing upwards (downwards) indicate initiations
(terminations) of F =V . Red downward arrows express future termina-
tions of F =V , which are the result of future initiations of F =V ′, while
black downward arrows indicate immediate terminations of F =V . Faded,
crossed-out arrows denote cancelled future terminations of F =V , which
are due to cancelled future initiations of F =V ′. The dotted lines above
the arrows express the delay R. Solid lines between arrows express the
maximal intervals of F =V . In (a)(v) and (b)(v), the displayed intervals end
at qi to indicate that they are open, i.e., F =V is not terminated within the
current window. 73

3.3 (a) The dependency graph G , (b) the f-contracted dependency graph G fcd

and (c) the contracted dependency graph Gcd of NetBill. For simplicity, we
omitted the arguments of fluents, while a vertex vj is displayed as j . In
diagram (a), the blue dotted rectangles denote the weakly connected com-
ponents of the i-reduced dependency graph G ird of G . The brown dotted-
dashed rectangles denote the cd-components ofG . In diagram (b), the blue
dashed rectangles denote the strongly connected components of G fcd . The
vertices ofWq ,Wp,Wc andWs are the result of contracting the weakly con-
nected components ofG ird , concerning resp. the FVPs of quote, permission,
contract and suspended . In diagram (c), the vertices of Sq , Sp and Scs are
produced by contracting the strongly connected components of G fcd , con-
cerning Wq , Wp, and Wc and Ws . 74

3.4 Maximal interval computation with the allen construct. 87

3.5 Online maximal interval computation. 91

4.1 The reasoning times of RTEC◦ and RTEC◦-naive in (a) voting and (b) Net-
Bill. The horizontal axes denote window size in terms of time-points (top),
average number of input entities (middle) and average number of computed
FVP intervals (bottom) per window. 101

4.2 RTEC◦ and jREC computing the maximal intervals of the status fluent of the
voting protocol. 101

4.3 (a) The predictive accuracy of RTEC◦ in the presence of delayed event ar-
rivals on the dataset of Brest. (b)–(c) RTEC◦ for maritime situational aware-
ness on the datasets of (b) Brest and (c) Europe. The horizontal axes de-
note window size in terms of hours (top), average number of input entities
(middle) and average number of computed FVP intervals (bottom) per win-
dow. 102

4.4 The reasoning times of RTEC◦ and RTEC in temporal specifications without
cyclic dependencies: (a) human activity recognition and (b) city transport
management. 103

4.5 Stream reasoning in (a) voting with delayed effects that may not be post-
poned, and NetBill with delayed effects that (b) may and (c) may not be
postponed. The window size is presented as in Figure 4.1. The vertical
axes show the avg. number of FVP rule evaluations. 104

4.6 Stream reasoning in a fragment of voting (left), and feedback loops for im-
mune response (middle) and phage infection (right). The horizontal axes
show the stream size; the vertical axes show the avg. of the total execution
times. 105

4.7 Stream reasoning for computing quote. 105

4.8 Maritime situational awareness on the datasets of Brest for FVPs without
future initiations (left) and FVPs with future initiations (middle), and all Euro-
pean seas for FVPs with future initiations (right). The horizontal axes have
the same format as in Figure 4.3. 106

5.1 Probabilistic activity recognition with Prob-EC (after [Skarlatidis et al., 2015a]).117

5.2 Probabilistic recognition over noisy data streams. The solid black line rep-
resents instantaneous CE probabilities, as computed by Prob-EC, while the
dotted line designates the chosen threshold T for recognition. The outcome
of Prob-EC, given this threshold value, is presented by the green straight
lines. The red line expresses the recognition of PIEC. 118

6.1 Online probabilistic CER. First, Prob-EC, equipped with the Event Calculus
axioms (bottom left), and application-specific fluent initiation and termina-
tion rules (top left), reasons over a probabilistic data stream (top right) to
derive the instantaneous probabilities of the target CEs (‘Point-based CE
stream’ at the center of the picture). Second, oPIEC processes this stream
of instantaneous CE probabilities to compute the probabilistic maximal in-
tervals of the target CEs (bottom right). 130

6.2 Probabilistic recognition over noisy data streams (continued from Figure
5.2). The solid black straight line denotes the current data batch. The black
crosses on top of the horizontal axis denote the time-points stored in the
support set, while the blue straight line denotes the recognition of oPIEC,
given the data seen so far. 134

6.3 Probabilistic recognition over noisy data streams (continued from Figure
6.2). The orange straight line expresses the recognition of oPIECb af-
ter processing the current data batch. Black crosses denote the potential
starting points of future PMIs computed by oPIEC/oPIECb and cached by
oPIEC. Orange crosses depict the ones cached in the bounded support set
of oPIECb after processing the current data batch. 140

6.4 The deletion probabilities of the elements of set S whose time-points are
t1 , t2 and t3 . The left diagram shows the temporal positions of these
time-points in relation to the last time-point of the current batch tnow and
their least durations ld1 , ld2 and ld3 in relation to the mean duration µ of
the observed values. The right diagram visualises the process of
calculating the deletion probabilities of these time-points. For time-point
t1 , delPr(t1)= 0 because ld1 <µ. For time-points t2 and t3 , whose least
durations are greater than µ, delPr is equal to the area under
durationsPDF defined by the integral of equation (6.4). As an example,
delPr(t2) is equal to the area under durationsPDF between 2µ−ld2 and
ld2 , i.e., delPr(t2)=

∫ ld2
2µ−ld2

durationsPDF (x) dx 141

6.5 Probabilistic recognition over noisy data streams (continued from Figure
6.3). The violet straight line expresses the recognition of oPIECbd after pro-
cessing the current data batch. Violet crosses depict the potential starting
points of future PMIs cached by oPIECbd after processing the current data
batch. 144

7.1 The predictive accuracy of oPIECbd and oPIECb on human activity recog-
nition. The intervals computed by oPIECbd and oPIECb are compared to
the PMIs computed by PIEC. The point-based systems providing the input
probability streams are Prob-EC (diagrams (a)–(f)) and OSLα (diagrams
(g)–(h)). 151

7.2 Indicative comparison of the intervals computed by PIEC (top) against those
computed by oPIECbd (middle) and oPIECb (bottom). Green lines denote
true positives, red lines denote false positives, while grey lines denote false
negatives. 152

7.3 The predictive accuracy of oPIECbd and oPIECb on maritime situational
awareness. The intervals computed by oPIECbd and oPIECb are compared
to the PMIs computed by PIEC. The point-based system providing the input
probability streams is Prob-EC. 153

7.4 The predictive accuracy of oPIECbd and SEC against the ground truth pro-
vided by the CAVIAR team. The standard deviations in diagram (b) are
small, and thus not visible. oPIECbd consumed the instantaneous CE prob-
abilities computed by Prob-EC (which are the same as the instantaneous
CE probabilities computed by SEC). 155

7.5 The reasoning times of oPIECbd and Prob-EC (oPIECbd+Prob-EC), SEC
and PEC on the task of detecting the ‘moving’ CE under ‘smooth noise’ in
logarithmic scale. PEC and SEC required more than 5 hours to process
streams including at least 256 events and 1024 events, respectively, and
thus we terminated their execution in these cases. 156

7.6 The predictive accuracy of oPIECbd and OSLα on the task of detecting the
‘meeting’ CE against the ground truth provided by the CAVIAR team. 156

A.1 The cycle-sum graph of an RTEC◦ program. 171

A.2 The cycle-sum graph of an RTEC→ program. 172

Reasoning over Complex Temporal Specifications and Noisy Data Streams

LIST OF TABLES

2.1 Main predicates of the Event Calculus. 43

2.2 Seven relations of Allen’s interval algebra. 48

2.3 A comparison of state-of-the-art frameworks. B.K.: Background Knowl-
edge, N.: Negation, H.: Hierarchies, S.R.: Stream Reasoning, C.: Cy-
cles, D.E.: Events with Delayed Effects, A.: Allen Relations, ✓⋆: Although
lacking a built-in represenation and optimised treatment, the underlying lan-
guage is expressive enough to capture this feature. 50

3.1 Stream reasoning with the Event Calculus. The second column shows the
evaluated predicates and the third column refers to the rules used in their
evaluation. We use ‘?’ to indicate that we will illustrate predicate evaluation,
‘✓’ to express a successful evaluation, and ‘×’ to denote an unsuccessful
evaluation. The predicates in the second column are indented to distinguish
between the head and body atoms of a rule. 62

3.2 Stream reasoning with RTEC. a1–a2 refer to Algorithms 1–2. 68

3.3 Output modes of the allen construct. 86

4.1 Average reasoning times for Allen relation computation ((a) and (b)) and
CER (c) in milliseconds. 107

5.1 Total choices over the ProbLog program of Example 23 and the probabilities
of the corresponding possible worlds. 113

5.2 PIEC with threshold T = 0 .5 (after [Artikis et al., 2021]). 120

5.3 A comparison of probabilistic CER frameworks in terms of the underlying
formalism, temporal model, support for background knowledge, uncertainty
model and learning capabilities. B.K.: Background Knowledge, M.L.: Ma-
chine Learning. 122

5.4 A comparison of probabilistic CER frameworks in terms of the time com-
plexity, empirical efficiency, predictive accuracy and code availability. C.A.:
Code Availability. 123

6.1 oPIEC operating on data batches. 134

6.2 Support set maintenance of oPIECb. 139

7.1 The input SDEs (above the dashed line) and contextual data (below the
dashed line), and the output CEs of human activity recognition. 148

27 P. Mantenoglou

7.2 The input SDEs (above the dashed line) and contextual data (below the
dashed line), and the output CEs of maritime situational awareness. 149

7.3 Indicative interval computation comparison between PIEC, oPIECbd and
oPIECb. The first column presents the PMIs computed by PIEC. The sec-
ond and third columns present the support sets (lists of tuples in the form
of (t , prev_prefix [t])) of oPIECbd and oPIECb, respectively, at the time de-
noted by the ending point of the corresponding PMI. 152

7.4 Run-times of oPIECbd, oPIECb and PIEC when computing the PMIs of
‘rendez-vous’ under ‘strong noise’. 154

Reasoning over Complex Temporal Specifications and Noisy Data Streams

1. INTRODUCTION

Stream reasoning involves temporal patternmatching over large volumes of incrementally-
arriving events, i.e., symbolic data that are associated with a time of occurrence, which
may be produced by applying a computational process on raw data [Fragkoulis et al.,
2024]. In the maritime domain, e.g., a collection of position and velocity signals emitted
from a vessel may be translated into a symbolic event indicating a change in the speed
or the heading of the vessel by means of ‘critical point annotation’ [Fikioris et al., 2023].
The goal of temporal pattern matching over streams of events is the detection of situations
of interest, i.e., spatio-temporal combinations of events, often incorporating background
knowledge [Dell’Aglio et al., 2017]. For instance, in the maritime domain, ‘trawling’, i.e.,
a type of fishing activity which involves several consecutive turns, can be expressed as a
sequence of ‘change in heading’ events.

A stream reasoning system is equipped with a temporal specification language, i.e., a
formalism defining a set of operators between events. In order to define a trawling activity
in the maritime domain, e.g., a temporal specification language may employ a ‘sequence’
operator and define ‘trawling(V)’, i.e., the situation indicating that a vessel V is trawling,
as a sequence of ‘change_in_heading(V)’ events, where the temporal distance between
two consecutive change_in_heading(V) events does not exceed 10 minutes [Pitsikalis et
al., 2019]. Such patterns may be given by domain experts [Skarlatidis et al., 2015a] or
learned from data [Katzouris and Artikis, 2020; Michelioudakis et al., 2024].

Numerous frameworks employ logic-based languages [Artikis et al., 2012b; Giatrakos et
al., 2020]. Logic-based formalisms offer several advantages, as they exhibit a formal and
declarative semantics, allow for a compact and intuitive representation of spatio-temporal
patterns, as the user need only specify what is to be computed, and not necessarily how it
is to be computed, and incorporate background knowledge. Thus, logic-based formalisms
may serve as the basis of a temporal specification language for stream reasoning. The
temporal pattern matching task is assigned to an automated reasoner for the selected
logical formalism, deriving situations of interest based on the provided declarative speci-
fications.

Temporal pattern matching in a streaming setting introduces several challenges compared
to the batch setting. The large, high-velocity and theoretically unbounded data streams
that we find in contemporary applications cannot be maintained in memory, while it is not
computationally feasible to reason over the entire history of the input data for each new
event arrival. To address these issues, reasoning is often performed over windows, i.e.,
partial and bounded views of the stream [Verwiebe et al., 2023]. At each query time, the
system reasons over the events that fall within the current window, ignoring events with
earlier time-stamps, which are typically discarded from memory. To ensure correctness,
the temporal extent of the window must be selected in such a way, so that the derivations
of the system concerning situations inside the window are the same as they would have
been if the entire history of events were available [Ronca et al., 2022].

Reasoning over large data streams requires highly efficient and optimised algorithms,

29 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

ideally performing one pass over the input data. To avoid repeating earlier computations,
stream reasoning systems often cache and re-use some of their previous derivations.
Such caching techniques often benefit from compositional specifications that form large
hierarchies of sub-patterns [White et al., 2007]. In this way, reasoning algorithms operate
following the dependencies in a hierarchy, while caching intermediate results, paving the
way for efficient reasoning [Chittaro and Montanari, 1996; Montali et al., 2013; Artikis et
al., 2015].

Another issue that we encounter in stream reasoning is data uncertainty [Dell’Aglio et al.,
2017]; erroneous or incomplete events may lead to the detection of incorrect instances
of pattern satisfaction. Consider, e.g., the task of detecting composite human activities
based on symbolic representations of video feeds. Gaps in sensor data are common in
this scenario, as a result of object occlusion in videos, and may lead to the detection of
incorrect activities [Singh and Vishwakarma, 2019]. Similarly, in the maritime domain,
the malfunction of a signal transmitter may lead to a communication gap concerning the
whereabouts of a vessel [Pitsikalis et al., 2019]. A catalogue of the sources of such uncer-
tainty/noise may be found in [Alevizos et al., 2017]. In order to express noisy input events,
the systems generating input events from raw data may associate a probability value with
each generated event, serving as a confidence estimate [Kimmig et al., 2011; Bellodi et
al., 2020]. A probabilistic reasoning framework may then reason over such probabilistic
events in order to derive the probabilities of situations of interest at each point in time.

1.1 Motivation

Stream reasoning frameworks are often assessed in terms of the range of temporal spec-
ifications they support, the efficiency of their reasoning algorithms, as well as the ability
to handle uncertainty [Dell’Aglio et al., 2017]. The potential for extending the range of
temporal specifications supported by such frameworks, while maintaining their high rea-
soning efficiency, and the absence of frameworks handling noisy data streams motivate
this thesis. We focus our attention on the Event Calculus, a logic programming formalism
for representing events and reasoning about their effects over time [Kowalski and Sergot,
1986]. In order to compactly represent the effects of events, the Event Calculus employs
the commonsense law of inertia, according to which a situation of interest is currently in
effect, if it has been initiated by an event at some earlier time, and not terminated by an-
other event in the meantime. The Event Calculus exhibits a formal, declarative semantics,
while supporting non-monotonic reasoning, hierarchical specifications, i.e., situations of
interest defined in terms of other situations, relational specifications, i.e., situations in-
volving multiple entities of the domain, and background knowledge. Moreover, the Event
Calculus has been employed in numerous settings, including mobility assistance [Bro-
muri et al., 2010], reactive and proactive health monitoring [Chaudet, 2006; Kafali et al.,
2017], e-commerce with negotiation agents [Alrayes et al., 2018; Hopkins et al., 2019],
simulations with cognitive agents [Shahid et al., 2021; Shahid et al., 2023], computational
ethics [Berreby et al., 2018], biological feedback processes [Srinivasan et al., 2022], as
well as the online detection of composite activities in shipping [Montali et al., 2013] and

P. Mantenoglou 30

Reasoning over Complex Temporal Specifications and Noisy Data Streams

public space monitoring [Skarlatidis et al., 2015a].

We discuss three types of temporal specifications—cyclic dependencies, events with de-
layed effects and Allen’s interval relations—and noisy data streams. These features are
not supported by Event Calculus-based frameworks for reasoning over event streams,
which serves as the main motivation for this thesis. Subsequently, we outline applications
that require some of the aforementioned types of specifications and/or feature noisy data
streams.

1.1.1 Stream Reasoning over Complex Temporal Specifications

The ‘Run-Time Event Calculus’ (RTEC) is a formal computational framework for stream
reasoning [Artikis et al., 2015]. RTEC is a logic programming implementation of the Event
Calculus. The language of RTEC has a formal, declarative semantics; temporal specifi-
cations in RTEC are locally stratified logic programs [Przymusinski, 1988]. RTEC extends
the Event Calculus with optimisation techniques for handling data streams. To avoid re-
dundant computations, RTEC processes hierarchical patterns using bottom-up reasoning
and caching. Moreover, RTEC employs a sliding window, thus reasoning over a small
part of the input data, while discarding events taking place before the window. RTEC has
proven highly efficient in numerous applications, such as city transport management [Ar-
tikis et al., 2015], maritime situational awareness [Pitsikalis et al., 2019] and commercial
fleet management [Tsilionis et al., 2022].

The language of RTEC, however, is not expressive enough to capture some types of
temporal specifications that we find in contemporary applications.

The specifications of multi-agent e-commerce protocols, e.g., often include cyclic depen-
dencies. For instance, a contract may be awarded to an agent that has not been sus-
pended, while an agent may be suspended when not fulfilling the terms of a(nother) con-
tract. As another example, consider the recognition of the different stages of a ‘fishing
trip’, which is important for managing fishing activity and port traffic. For instance, a fish-
ing vessel is said to be: (a) approaching a fishing area if it has ended another trip and goes
in motion, i.e., ‘under way’; (b) trawling when it stops the approach, i.e., it has reached
the fishing area and starts making consecutive turns; (c) returning when it stops trawling
and goes under way; moreover, a vessel is said to have (d) ended its trip when it com-
pletes its return by becoming anchored or moored. Stream reasoning frameworks do not
typically support patterns with cyclic dependencies. RTEC, e.g., is restricted to acyclic
knowledge bases [Artikis et al., 2015]. Moreover, frameworks that do support patterns
with cyclic dependencies often evaluate these patterns in an inefficient manner. For in-
stance, jREC [Montali et al., 2013] may perform several redundant computations when
processing a pattern with cyclic dependencies.

Apart from immediate effects, events often have delayed effects. In multi-agent
e-commerce protocols, e.g., establishing a contract obliges the consumer to pay the
agreed price, and the merchant to deliver the goods, within a specified time [Chopra
et al., 2020]. In simulations of biological systems, the activation of a gene may affect the

31 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

concentration of a protein after a time delay [Srinivasan et al., 2022]. In the maritime
domain, a trawling activity is said to end 10 minutes after a ‘change in heading’ event,
provided that no other event of this type has taken place in the meantime [Pitsikalis
et al., 2019]. Several formalisms have been proposed for handling events with delayed
effects [Karlsson et al., 1998; Marı́n and Sartor, 1999; Miller and Shanahan, 2002;
Hindriks and Riemsdijk, 2013; Demolombe, 2014; Chopra et al., 2020]. These
approaches, however, cannot handle continuous queries over large, evolving data
streams and complex temporal specifications that need to be computed with minimal
latency. Moreover, the stream reasoning systems that we find in the literature do not
support events with delayed effects. In RTEC, e.g., an event may have immediate
effects, i.e., ‘initiating’/‘terminating’ a situation of interest at the time of its occurrence, but
not delayed effects.

Situations of interest are typically durative, and thus should be expressed using temporal
intervals. Such a treatment allows the detection of ongoing phenomena, while circum-
venting the unintended semantics of using time-points for representing durative proper-
ties [Galton and Augusto, 2002; Paschke, 2005; White et al., 2007]. In order to produce
more accurate patterns, temporal intervals may be combined using the relations of Allen’s
interval algebra, i.e., thirteen jointly exhaustive and pairwise disjoint relations among in-
tervals [Allen, 1984]. Consider, e.g., the detection of a ‘suspicious rendez-vous’ of two
vessels in the maritime domain, where one of the vessels turns off signal transmissions,
while being close to the other vessel. This phenomenon can be expressed with the ‘during’
relation of Allen’s algebra, while it cannot be captured by common interval operators, such
as union and intersection. The use of Allen’s algebra has proven quintessential for defin-
ing such phenomena and is supported by several frameworks [Brendel et al., 2011; Anicic
et al., 2012; Körber et al., 2021; Awad et al., 2022]. The languages of these frameworks,
however, do not allow for the explicit representation of time, complicating the specification
of persistence and changes in the detected situations over time. In contrast, such spec-
ifications are innately supported in Event Calculus dialects, like RTEC. The language of
RTEC, however, does not capture the relations of Allen’s interval algebra.

1.1.2 Reasoning over Noisy Data Streams

Event Calculus-based frameworks that handle uncertainty do not support stream reason-
ing [Thon et al., 2011; Skarlatidis et al., 2015b; D’Asaro et al., 2017; McAreavey et al.,
2017; Artikis et al., 2021]. The ‘Probabilistic Interval-based Event Calculus’ (PIEC) is a
formal computational framework that processes events with attached probability values
and deduces the (probabilities of the) maximal intervals of situations of interest by means
of Event Calculus-style reasoning [Artikis et al., 2021]. It has been shown that interval-
based recognition improves upon the predictive accuracy of point-based recognition in
the presence of data uncertainty. PIEC requires the entire dataset of event probabilities
in order to guarantee correct interval computation. This is not feasible in a streaming set-
ting, where only a very small and bounded portion of the input can be stored in memory
and processed at a later time. Moreover, for each new event arrival, PIEC reconstructs

P. Mantenoglou 32

Reasoning over Complex Temporal Specifications and Noisy Data Streams

the output intervals from scratch, while each event commonly induces only minor or no
changes to the previously computed intervals. This sort of re-computation leads to signif-
icant reasoning inefficiencies.

1.1.3 Applications

There are numerous real-world applications that require efficient reasoning over complex
temporal specifications and large, high-velocity streams of (noisy) events. This is the
main motivation for this thesis. We discuss applications from the fields of composite event
recognition [Giatrakos et al., 2020], multi-agent systems [Wooldridge, 2009] and biological
feedback processes [Thomas and d’Ari, 1990].

1.1.3.1 Composite Event Recognition

We outline two composite event recognition applications, i.e., maritime situational aware-
ness and human activity recognition.

Maritime Situational Awareness.Maritime activities need to be monitored in real time, in
order to detect dangerous, illegal and environmentally hazardous activities with minimal la-
tency, thus ensuring safe shipping. Automatic Identification System (AIS) position signals
are continuously being emitted by vessels, and contain information about their heading,
speed and navigational status [Artikis and Zissis, 2021]. Streams of symbolic events can
be produced based on AIS signals by means of trajectory simplification, generating ‘crit-
ical’ events to signify major changes in a vessel’s behaviour, such as a stop, a turn or
a gap in signal transmissions [Patroumpas et al., 2015; Fikioris et al., 2023], and spa-
tial processing, annotating spatial relations between vessels and maritime areas, ports or
other vessels [Santipantakis et al., 2018]. A computational framework may process such
streams of symbolic events and detect composite maritime activities that require special
attention, such as ship-to-ship transfers of goods in the open sea, search and rescue op-
erations, etc., by means of temporal pattern matching. Composite maritime activities may
be defined in terms of cyclic dependencies (e.g., ‘fishing trip’), events with delayed effects
(e.g., ‘trawling’) and Allen relations (e.g., ‘suspicious rendez-vous’). Moreover, AIS sig-
nals may include gaps and erroneous indications, leading to noisy input events [Bereta
et al., 2021].

Human Activity Recognition. The timely detection of composite human activities in pub-
lic spaces may prevent theft and physical harm, paving the way for a secure environment.
In this application, the input streams are symbolic representations of video feeds, con-
taining events concerning simple activities performed by one person and identified on
individual video frames, such as ‘walking’ and ‘running’, as well as the coordinates and
the orientation of the tracked people. The temporal pattern matching task is to detect
situations of interest expressing composite human activities, i.e., ‘meeting’, ‘moving to-
gether’ and ‘fighting’. Symbolic representations of video feeds often include erroneous
indications, because, e.g., of temporary failures in the object tracker or object occlusion,

33 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

leading to noisy event streams [Singh and Vishwakarma, 2019]. Therefore, human activity
recognition requires a framework that handles noisy event streams.

1.1.3.2 Multi-Agent Systems

We describe two multi-agent systems protocols, formalising a voting procedure and the
e-commerce protocol NetBill.

Voting. Our voting protocol may be summarised as follows: a committee sits and the
chair opens the meeting; a member proposes a motion; another member seconds the
motion; the members debate the motion; the chair calls for those in favour/against to
cast their vote; finally, the motion is carried, or not, according to the standing rules of the
committee [Pitt et al., 2006]. Agents occupy the roles of proposer, seconder, voter and/or
chair, and deliberate over various motions over time.

NetBill is an e-commerce protocol that includes consumers and merchants negotiating
over digital goods [Sirbu, 1997]. Consumers request quotes for goods and the interested
merchants reply with the quotes, or even proactively advertise their goods. A timely ac-
ceptance of a quote leads to a contract, which defines the processes of sending the digital
goods and payment [Yolum and Singh, 2002; Artikis and Sergot, 2010].

In both protocols, a set of normative positions, such as institutionalised power, permission
and obligation, guide the behaviour of the agents [Kowalski and Sergot, 1985; Jones and
Sergot, 1996; Sergot, 2001; Artikis and Pitt, 2008]. Moreover, sanctions deal with the per-
formance of forbidden actions and non-compliance with obligations. The temporal pattern
matching task is to detect the normative positions and the suspension periods of agents
over time by reasoning over streams of agent actions. The specifications of voting and
NetBill include cyclic dependencies and events with delayed effects.

1.1.3.3 Biological Feedback Processes

Biological processes exhibiting multi-stationary or oscillatory behaviour can often be spec-
ified via feedback loops. Biological feedback loops model control mechanisms expressing
that a change in the value of some biological variable, e.g., the concentration of an amino
acid, results in a (re-)adjustment of its value after some time [Srinivasan et al., 2022]. In
homeostasis, e.g., the production of an amino acid is regulated based on its concentration.
If its concentration is initially high, but decreasing, then its production is initially inhibited
and later activated, once its concentration levels fall below a threshold. As a result, the
concentration of the amino acid oscillates around a specified value. The Generalised Ki-
netic Logic models feedback loops in terms of asynchronous automata, supporting state
changeswith time delays [Thomas, 1991]. Figure 1.1, e.g., depicts two biological feedback
loops in the Generalised Kinetic Logic, modelling immune system response in vertebrates
and the invasion of a phage in a bacterial cell. We describe these two feedback loops,
following [Srinivasan et al., 2022].

P. Mantenoglou 34

Reasoning over Complex Temporal Specifications and Noisy Data Streams

h
OR

s
OR

e

+2 +1
+1

-2

cI cro

cII n

-2

-1

-2

+1

+1 -2
-1

-3

+2 -3

Figure 1.1: The feedback loops of immune response (left) and phage infection (right),
after [Srinivasan et al., 2022]. An edge from ‘x’ to ‘y’ with label ‘+n’ (resp. ‘-n’), where n is
a positive integer, expresses a positive (negative) interaction, i.e., the value of y increases
(decreases) by 1 at a specified time after the value of x becomes greater or equal to n.

Immune Response. The role of the immune system is to produce antibodies in order to
mitigate invaders called antigens. Immune response mainly involves two categories of
cells. B-lymphocytes generate antibodies, while T-lymphocytes regulate their production.
T-lymphocytes consist of h-cells and s-cells, each specialised to the production of anti-
bodies that deal with different parts of the antigen. Figure 1.1 (left) depicts a simplified
model of the feedback loop for immune response. Variables h and s denote the concen-
trations of h-cells and s-cells. h and s have three possible values, while e is a Boolean
variable denoting the presence of an antigen. According to the edges connecting h and s,
if h ≥ 1 , then s increases by 1, while s ≥ 2 results in the decrease of h by 1. These value
changes take place after some specified time delays d+

s and d−
h , respectively. Therefore,

an increase in the concentration of h-cells induces the secretion of s-cells, which in turn
suppress the production of h-cells.

Phage Infection. The invasion of a phage (virus) into a host bacterium may result in
the integration of the phage’s DNA into the host’s DNA, leading to immunity for the host.
The combined DNA produces a repressor protein cI that prevents the transcription of two
groups of viral genes, called N and Cro, which would otherwise produce proteins n and
cro, resulting in the death of the host. Moreover, the combined DNA produces protein
cII , which promotes the activation of repressor gene cI . Figure 1.1 (right) presents a
simplified model of the feedback loop for phage infection. Variables cI , n, cro and cII
denote the concentrations of the corresponding proteins. According to the edge from cII
to cI , e.g., variable cI increases by 1 at a specified time after the value of variable cII
becomes greater or equal to 1.

We study simulations of the biological processes for immune response and phage infec-
tion. In both cases, the task is to compute the values of all variables in the corresponding
feedback loop as a simulation progresses. Both biological processes demand reasoning
over cyclic dependencies and events with delayed effects.

35 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

1.2 Contributions

The contributions of this thesis can be divided into two main parts. In the first part, we
extend RTEC to three orthogonal directions and propose three systems: RTEC◦, RTEC→

and RTECA, supporting, respectively, temporal specifications with cyclic dependencies,
events with delayed effects and Allen relations. In the second part, we propose oPIEC, a
novel framework that handles noisy data streams.

1.2.1 Stream Reasoning over Complex Temporal Specifications

Below, we highlight the key features of RTEC◦, RTEC→ and RTECA.

RTEC◦ is an extension of RTEC for reasoning over temporal patterns with cyclic depen-
dencies. RTEC◦ employs a set of novel reasoning algorithms, featuring an incremental
caching technique, in order to avoid redundant computations.

RTEC→ supports reasoning over streams of events with delayed effects. RTEC→ extends
the language of RTEC with two new types of language constructs. The former type des-
ignates the domain properties that are subject to change based on the delayed effects of
a specified set of events, as well as the temporal extent of the time delay of these effects.
The latter type of construct specifies the delayed effects that may be postponed by sub-
sequent event occurrences. At compile-time, RTEC→ establishes the optimal processing
order of a given temporal specification. At run-time, RTEC→ reasons over events with
delayed effects incrementally, while caching intermediate computations, thus avoiding re-
computations.

RTECA extends the language of RTEC with a novel language construct, allowing for Allen
relations in temporal patterns. RTECA computes Allen relation satisfaction with one pass
over the input intervals, while ensuring correct Allen relation computation with windowing.

For each of the proposed frameworks, i.e., RTEC◦, RTEC→ and RTECA, we prove that the
programs supported by its temporal specification language belong in the class of locally
stratified logic programs. Moreover, we prove the correctness of the novel reasoning
algorithms of each framework, and outline their worst-case time complexity, demonstrating
that their costs are bound by a small part of the stream with constant size.

We conducted extensive empirical analyses using large, synthetic and real data streams
for composite event recognition, multi-agent systems and biological feedback processes.
Our evaluation included empirical comparisons of RTEC◦, RTEC→ and RTECA with state-
of-the-art stream reasoning frameworks. Our results demonstrate that RTEC◦, RTEC→

and RTECA are highly efficient, verifying our complexity analyses, and outperform the
state of the art by orders of magnitude. RTEC◦, RTEC→ and RTECA are open-source
frameworks; the code, the domain specifications and the data streams we used for our
experiments are publicly available1. Thus, our experiments are reproducible.

1https://github.com/aartikis/rtec

P. Mantenoglou 36

https://github.com/aartikis/rtec

Reasoning over Complex Temporal Specifications and Noisy Data Streams

1.2.2 Reasoning over Noisy Data Streams

We propose oPIEC, i.e., an extension of the probabilistic event recognition framework
PIEC that is designed for reasoning over data streams, as opposed to the batch process-
ing of PIEC. First, we propose a technique for identifying the minimal set of time-points
that need to be cached, in a memory structure called ‘support set’, in order to guarantee
correct interval computation for durative phenomena. Second, we present a formal anal-
ysis of oPIEC, where we prove its correctness, i.e., we show that oPIEC computes the
same intervals as PIEC, and then present its worst-case time complexity, which is signifi-
cantly lower than that of PIEC. Third, we propose two ways to further reduce the cached
time-points, supporting highly efficient reasoning, while at the same time minimising the
effects on correctness. Our first solution is oPIECb, i.e., an extension of oPIEC with a
bounded support set and an algorithm to decide which elements of the support set should
deleted, in order to make room for new ones. Our second solution is oPIECbd, i.e., another
bounded-memory extension of oPIEC that leverages interval duration statistics to resolve
memory conflicts. In cases where the provided statistics are not sufficient to make enough
room in the support set, oPIECbd invokes the memory maintenance algorithm of oPIECb to
delete further elements. Fourth, we present complexity analyses for oPIECb and oPIECbd,
demonstrating that their memory maintenance algorithms do not introduce any delays in
reasoning. Fifth, we present a thorough empirical evaluation on a benchmark dataset for
human activity recognition, as well as real data streams from the field of maritime situ-
ational awareness. Our experimental evaluation shows that oPIECb and oPIECbd may
achieve comparable predictive accuracy to batch reasoning, avoiding the prohibitive cost
of such reasoning. Moreover, our evaluation demonstrates that oPIECbd is the preferred
option for stream reasoning, striking the best balance between predictive accuracy and
computational efficiency. oPIECb and oPIECbd are open source frameworks2, allowing for
the reproducibility of our experiments.

1.2.3 Publications

This thesis is based on the following publications:

Journal Publications:

• Mantenoglou P., Pitsikalis M., Artikis A., Reasoning over Streams of Events with
Delayed Effects.
In Transactions on Knowledge and Data Engineering (TKDE), under review.

• Mantenoglou P., Artikis A., Paliouras G., Online Event Recognition over Noisy Data
Streams.
In International Journal of Approximate Reasoning (IJAR), 161, 2023.
DOI: https://doi.org/10.1016/j.ijar.2023.108993

Conference Publications:

2https://github.com/periklismant/opiec

37 P. Mantenoglou

https://doi.org/10.1016/j.ijar.2023.108993
https://github.com/periklismant/opiec

Reasoning over Complex Temporal Specifications and Noisy Data Streams

• Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Rela-
tions.
In Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 502–511, 2023.
DOI: https://doi.org/10.24963/kr.2023/49

• Mantenoglou P., Pitsikalis M., Artikis A., Stream Reasoning with Cycles.
In Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 533–553, 2022.
DOI: https://doi.org/10.24963/kr.2022/56

• Mantenoglou P., Artikis A., Paliouras G., Online Probabilistic Interval-based Event
Calculus.
In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI),
pp. 2624–2631, 2020.
DOI: https://doi.org/10.3233/FAIA200399

Peripheral Publication:

• Andrienko N., Andrienko G., Artikis A., Mantenoglou P., Rinzivillo S., Human-in-
the-Loop: Visual Analytics for Building Models Recognising Behavioural Patterns
in Time Series.
In IEEE Computer Graphics and Applications (CG&A), pp. 1–15, 2024.

1.3 Thesis Outline

This thesis is structured as follows. In Chapter 2, we outline the background material
that is necessary to describe RTEC◦, RTEC→ and RTECA. Particularly, we discuss logic
programming, the Event Calculus, the computational framework RTEC and Allen’s interval
algebra. Afterwards, we provide a literature review on frameworks that are relevant to
RTEC◦, RTEC→ and RTECA. In Chapter 3, we propose RTEC◦, RTEC→ and RTECA,
while, in Chapter 4, we present an empirical evaluation of these systems, demonstrating
their benefits compared to related frameworks. Next, we move to the second part of
the thesis, where we introduce oPIEC, i.e., a computational framework handling noisy
data streams. In Chapter 5, we provide the necessary background material for oPIEC,
which comprises probabilistic logic programming, Prob-EC, i.e., a probabilistic extension
of the Event Calculus, and PIEC, i.e., an interval-based extension of Prob-EC. Moreover,
we provide a literature review on frameworks handling uncertainty. Chapter 6 presents
oPIEC, as well as two bounded-memory versions of oPIEC, i.e., oPIECb and oPIECbd.
Afterwards, in Chapter 7, we provide an experimental evaluation of oPIECb and oPIECbd,
including a comparison with related frameworks. Chapter 8 summarises our work and
proposes further research directions.

P. Mantenoglou 38

https://doi.org/10.24963/kr.2023/49
https://doi.org/10.24963/kr.2022/56
https://doi.org/10.3233/FAIA200399

Reasoning over Complex Temporal Specifications and Noisy Data Streams

2. BACKGROUND: STREAM REASONING

We provide the necessary background material for the specification of RTEC◦, RTEC→

and RTECA; our work on reasoning over noisy data streams, i.e., oPIEC, is presented in
Chapters 5–7. First, we describe some key concepts of logic programming. We focus on
the semantics of logic programming and, in particular, establish an intended meaning for
locally stratified logic programs, i.e., a class of programs whose variable-free incarnations
do not include cyclic dependencies with negation. Our proposed frameworks restrict at-
tention to locally stratified logic programs. Second, we provide an overview of the Event
Calculus, i.e., a formalism that extends logic programming with a representation of time,
events, and the effects of events over time. The Event Calculus serves as the basis of
all of our proposed frameworks, i.e., RTEC◦, RTEC→, RTECA and oPIEC, paving the way
for a unified Event Calculus-based framework for temporal pattern matching over event
streams. Third, we discuss previous work on RTEC, highlighting the syntax and the key
reasoning algorithms of the system. Fourth, we describe the relations of Allen’s interval
algebra; we introduce these relations in the language of RTEC in Section 3.4. Fifth, we
present a literature review on stream reasoning frameworks.

2.1 Logic Programming Concepts

The basis of a stream reasoning framework needs to be a formal and declarative for-
malism. Without a declarative semantics, it may become difficult to trace unintended be-
haviours of the framework, complicating error detection. Moreover, using a declarative
formalism, the user need only specify the situations of interest of the domain by describ-
ing the conditions under which these situations arise, without the need to write an algorithm
for computing each one of these situations. Logic programming is a declarative formalism
with a formal semantics, allowing for a compact and intuitive representation of the patterns
of a domain, while seamlessly incorporating background domain knowledge. Thus, logic
programming can serve as the foundation of a specification language for temporal pattern
matching.

Logic programming is a subset of first-order logic where well-formed formulas are in
clausal form. We summarise the necessary aspects of logic programming for this thesis,
following [Lloyd, 1987].

The alphabet consists of variables, constants, predicate symbols and connectives, i.e., ‘,’
for conjunction, ‘←’ for implication, and ‘not’ for negation-by-failure [Clark, 1977]. Variables
start with an upper-case letter, while constants and predicate symbols start with a lower-
case letter. A term is a variable or a constant. An atom is an expression of the form
‘p(t1 , . . . , tn)’, where p is a predicate symbol with arity n and t1 , . . . , tn are terms. An atom
is called ground if it contains no variables. A literal is an atom or a negated atom, i.e.,
an expression of the form ‘not p(t1 , . . . , tn)’. A program is a set of clauses, i.e., formulas
following the syntax ‘a ← b1 , . . . , bn ’, where a is an atom and b1 , . . . , bn are literals. We

39 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

call a the head of the clause, while b1 , . . . , bn comprise the body of the clause. Due to the
syntactical form of clauses, we refer to them as rules throughout. All variables that appear
in the body of a rule are assumed to be universally quantified. A rule with an empty body
is called a fact. A definite rule is a rule whose body literals, if any, are all positive, i.e.,
they are all atoms. A program is called definite if it contains only definite rules, and normal
otherwise. A ground rule contains only ground atoms, and a ground program contains
only ground rules.

In logic programming, a program constitutes a declarative description of what is true in
the world. A semantics is used to map each possible program to its intended meaning.
Given a program P , an interpretation of P consists of (i) a domain D , (ii) a mapping of
each constant in P to an element of D , and (iii) a mapping of each n-ary predicate symbol
in P to a relation on Dn . A model of a program P is an interpretation of P where all
rules in P are true statements. A ground atom a is a logical consequence of a program
P if, for every interpretation I , I is a model of P implies that a ∈ I . Given a program
P , the Herbrand universe UP of P is the set of all constants that appear in P , and the
Herbrand base BP of P is the set of all ground atoms p(t1 , . . . , tn), where p is a predicate
symbol of P with arity n and t1 , . . . , tn ∈ UP . An Herbrand interpretation of a program P
is an interpretation of P such that (i) the domain is the Herbrand universe UP of P and (ii)
all constants in P are mapped to themselves in UP . Since, for Herbrand interpretations,
the mapping of constants is fixed, we often identify an Herbrand interpretation with the
subset of the Herbrand base that contains the ground atoms that are true with respect to
the interpretation. An Herbrand model of a program P is an Herbrand interpretation of P
that is a model of P . The role of a semantics is to identify the model of the program that
expresses its intended interpretation, i.e., the meaning of the program.

Intuitively, the intended interpretation of a program should consist of the ground atoms
that are logical consequences of the program, and no other ground atom. For a definite
program P , i.e., a program without negation, the logical consequences of P can be spec-
ified without ambiguity by its model MP , which is the intersection of all Herbrand models
of P (see Theorem 6.2 in [Lloyd, 1987]). MP is the least Herbrand model of P , i.e., for
every Herbrand model M ̸=MP of P , it holds that MP ⊂ M . MP is the intended interpre-
tation of P ; the other models of P contain at least one ground atom that is not a logical
consequence of P , and thus do not capture the intended meaning of P .

Unfortunately, the above result cannot be generalised to the broader class of normal logic
programs, i.e., programs with negation, because these programs may have multiple min-
imal Herbrand models. The problem of identifying the intended interpretation of a normal
logic program has been studied thoroughly, andmany semantics have been proposed [Apt
and Bol, 1994]; notably, the stable model semantics [Gelfond and Lifschitz, 1988] and the
well-founded semantics [van Gelder et al., 1991]. For some normal logic programs, there
is a natural choice of a model that should be the intended interpretation of the program, in
the sense that the model is compliant with the ‘closed world assumption’ (CWA) [Reiter,
1977], i.e., an inference rule stating that ‘not a ’ is true if a cannot be finitely proven. Con-
sider, e.g., a program P that contains the fact ‘b’ and the rule ‘a ← b, not c’. P has two
models: M1 ={b, a} andM2 ={b, c}. While bothM1 andM2 are minimal Herbrand models

P. Mantenoglou 40

Reasoning over Complex Temporal Specifications and Noisy Data Streams

of P , only model M1 captures the intended meaning of P . The use of negation-by-failure
imposes a type of default preference among the negated premise and the consequent of
rule ‘a ← b, not c’, according to which c has a higher ‘priority for minimisation’ than a. This
type of priority is related to the CWA, i.e., we apply the CWA rule to c first, deducing that
it is false on the grounds that c cannot be proven based on the rules of the program, and
only then try to prove a. We define a priority relation <m on the elements of the Herbrand
base of a program, and the auxiliary relation ≤m , as follows:

Definition 1 (Priority Relation (after [Przymusinski, 1988])): Given a program P , the
relations <m and ≤m are defined as follows:

• a <m c, if c is a negative body literal and a is the head of a ground instance of a rule
in P .

• a ≤m b, if b is a positive body literal and a is the head of a ground instance of a rule
in P .

• if a ≤m b and b ≤m c, then a ≤m c.
• if a <m b and b ≤m c, then a <m c.
• if a ≤m b and b <m c, then a <m c.
• if a <m b, then a ≤m b.
• nothing else satisfies <m or ≤m . ■

Given two models M and N of a program P , it is possible to determine which model is
preferable based on the relative priorities of the ground atoms they contain. If there is no
model of P that is preferable to some model N of P , then N is a perfect model of P .

Definition 2 (Preference Relation and Perfect Models (after [Przymusinski, 1988])):
Suppose thatM andN are two distinct models of a programP . We say thatN is preferable
toM , i.e., N ≪ M , if, for every ground atom a in N \M , there is a ground atom b inM \N ,
such that a <m b. We say that a model N of P is perfect if there are no models of P that
are preferable to N . We call≪ the preference relation on models. ■

For the program with fact ‘b’ and rule ‘a ← b, not c’, e.g., whose models are M1 ={b, a}
and M2 ={b, c}, we have a <m c, and thus M1 ≪ M2 . Therefore, M1 is a perfect model
of the program, while M2 is not a perfect model of the program.

Unfortunately, an arbitrary normal logic program may not admit a perfect model. For ex-
ample, a program P containing the rules ‘a ← not b’ and ‘b ← not a ’ has two models
Ma ={a} and Mb ={b}. It holds that b <m a and a <m b, and thus we have Ma ≪ Mb and
Mb ≪ Ma . Therefore, none of the models Ma and Mb is perfect. This type of semantic
ambiguities arise in programs that contain cyclic dependencies with negation. In order to
avoid these issues, we restrict our attention to programs that are locally stratified.

Definition 3 (Locally Stratified Logic Program (after [Przymusinski, 1988])): A normal
logic program P with a finite Herbrand base BP is called locally stratified if it is possible to
decompose BP into disjoint sets (strata) P0 , . . . ,Pn , so that, for every ground instance of
a rule ‘a ← b1 , . . . , bm , not c1 , . . . , not ck ’ in P , we have that, if a ∈ Pi , where 1 ≤ i ≤ n,
then:

41 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

• b1 , . . . , bm ∈ Pj , where j ≤ i , and
• c1 , . . . , ck ∈ Pj , where j < i .

A decomposition P0 , . . . ,Pn of P that satisfies the above conditions is called a local strat-
ification of P . ■

A locally stratified logic program has a unique perfect model (see Theorem 4 in [Przy-
musinski, 1988]). In what follows, the intended interpretation of the logic programs we
present coincides with their unique perfect model.

Logic programming is a natural candidate formalism for serving as the basis of a specifica-
tion language for temporal pattern matching, due to its formal and declarative semantics
and the ability to express both temporal and atemporal knowledge [Chesani et al., 2009;
Paschke and Kozlenkov, 2009; Falcionelli et al., 2019; Baumgartner, 2021b]. In the fol-
lowing section, we present the Event Calculus, i.e., a logic programming formalism for
representing event occurrences over time and reasoning about the changes in domain
properties that are induced by these events.

2.2 The Event Calculus

Temporal pattern matching over data streams requires a formalism that captures situations
of interest that evolve over time; logic programming is not sufficient for expressing such
temporal specifications. Consider, e.g., the domain of human activity recognition and
the task of detecting composite human activities, where we may need to represent the
event that a person p1 is walking. In logic programming, we can represent this event
as a fact: ‘walking(p1)’, where walking is a predicate and p1 is a constant corresponding
to some person p1 . walking(p1), however, does not contain any information about the
temporal aspects of the activity, such as its time of occurrence. This type of information is
necessary for specifying composite human activities. For instance, we may want to infer
that two people, p1 and p2 , are moving together when both of them are walking at the
same time. The facts walking(p1) and walking(p2) are not sufficient to prove that p1 and
p2 are moving together because these facts do not express the time frames during which
each person is walking.

We employ the Event Calculus, i.e., a logic programming formalism with a time sort and
a set of predicates for representing events and their effects on domain properties [Kowal-
ski and Sergot, 1986]. Since the inception of the Event Calculus, many dialects have
been put forward, including formulations in (variants of) first-order logic and as logic pro-
grams [Shanahan, 1999; Cervesato et al., 2000; Miller and Shanahan, 2002; Mueller,
2008; Mueller, 2015]. Event Calculus dialects are many-sorted, and include sorts for
representing time, events and ‘fluents’, i.e., properties that may have different values at
different points in time. Event occurrences may change the values of fluents. Thus, fluent
values reflect the effects of events on the world over time. Given a fluent F , the term
F =V denotes that F has value V . Boolean fluents are a special case in which the pos-
sible values are true and false.

P. Mantenoglou 42

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 2.1: Main predicates of the Event Calculus.

Predicate Meaning
happensAt(E , T) Event E occurs at time T

initiatedAt(F =V , T) At time T , a period of time during
which fluent F has value V is initiated

terminatedAt(F =V , T) At time T , a period of time during
which fluent F has value V is terminated

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V , T) The value of fluent F is V at time T

We describe a logic programming implementation of the Event Calculus where
time is linear, consisting of non-negative integer time-points [Artikis et al., 2010].
happensAt(E , T) denotes that an instantaneous event E occurs at time-point T .
initiatedAt(F =V , T) (resp. terminatedAt(F =V ,T)) denotes that a time period during
which a fluent F has the value V continuously is initiated (terminated) at time-point T .
initially(F =V) expresses that fluent F has the value V at time-point 0 , while
holdsAt(F =V , T) states that fluent F has value V at time-point T . Table 2.1
summarises the main predicates of this Event Calculus dialect.

A key feature of the Event Calculus is the built-in representation of the common-sense law
of inertia, according to which F =V holds at a time-point, if F =V has been ‘initiated’ by
an event at some earlier time-point, and not ‘terminated’ by another event in the meantime.
Consider the following domain-independent axiomatisation:

holdsAt(F =V , T)←
initially(F =V),
not broken(F =V , 0 , T).

(2.1)

holdsAt(F =V , T)←
initiatedAt(F =V , Ts), Ts < T ,
not broken(F =V , Ts , T).

(2.2)

broken(F =V , Ts , T)←
terminatedAt(F =V , Tf),
Ts < Tf < T .

(2.3)

broken(F =V , Ts , T)←
initiatedAt(F =V ′, Tf), V ̸= V ′,
Ts < Tf < T .

(2.4)

broken(F =V , Ts , T) is an auxiliary predicate that checks whether F =V is terminated,
or F is initiated with a value other than V , between time-points Ts and T . F , V , Ts and
T are ground at the time when broken is called. Rules (2.1) and (2.2) imply that F =V
holds at some time-point T if it held initially, i.e., at time-point 0 , or it has been initiated

43 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

by an event at a time-point before T , and has not been ‘broken’ in the meantime. F =V
is broken between time-points Ts and T if, at an intermediate time-point Tf , F =V is
terminated (rule (2.3)) or F =V ′ is initiated, for some V ′ ̸= V (rule (2.4)).

Rule 2.4 suggests that a fluent cannot have more than one value at any time;
initiatedAt(F =V , T) implies that F =V ′ is broken at T , for all V ′ ̸=V . Moreover, a fluent
may not have a value at some time-point(s). For instance, it is not the same to initiate
F = true and terminate F = false; the former implies, but is not implied by, the latter.

initiatedAt(F =V , T) and terminatedAt(F =V , T) are defined by means of
domain-dependent rules. Consider the example below:

Example 1 (Human Activity Recognition): Suppose that we have a symbolic represen-
tation of video content for human activity recognition. The representation includes simple
human activities, e.g., walking or being ‘active’, i.e., making non-abrupt body movements
in the same position, as well as position and orientation information for the tracked peo-
ple. We may employ the fluent-value pair (FVP) ‘moving(P1 ,P2)= true’ to denote that two
people P1 and P2 are said to be moving together, and specify the conditions under which
moving(P1 ,P2)= true is initiated or terminated using the following rules:

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(similarOrientation(P1 ,P2)= true, T).

(2.5)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

(2.6)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(active(P2), T).

(2.7)

Rule (2.5) suggests that if P1 and P2 are walking close to each other with a similar
orientation, then P1 and P2 start moving together. Rules (2.6)–(2.7) express some
termination conditions for moving(P1 ,P2)= true. For example, rule (2.6) states that
moving(P1 ,P2)= true is terminated when P1 walks away from P2 , and P1 and P2 are no
longer close to each other. ♢

In order to compute whether moving(P1 ,P2)= true holds at a given time-point, the
domain-independent axiomatisation of inertia, i.e., rules (2.1)–(2.4), must be combined
with the domain-specific definition of moving(P1 ,P2)= true, i.e., rules (2.5)–(2.7). Note
that moving(P1 ,P2)= true may have multiple initiations as P1 and P2 may be interacting
for several video frames. Similarly, moving(P1 ,P2)= true may have multiple
terminations. In this formulation of the Event Calculus, initiatedAt(F =V , T) does not
necessarily imply that F ̸= V at T . Similarly, terminatedAt(F =V , T) does not
necessarily imply that F =V at T . Suppose that F =V is initiated at time-points 50 and

P. Mantenoglou 44

Reasoning over Complex Temporal Specifications and Noisy Data Streams

65 and terminated at time-points 75 and 86 , and at no other time-points. In that case,
F =V holds at all T such that 50 < T ≤ 75 .

Note that rules (2.1)–(2.7) do not strictly conform with the syntax for logic programming
rules we presented in Section 2.1, according to which every atom appearing in a rule
has the form ‘p(t1 , . . . , tn)’, t1 , . . . , tn being constants or variables. In rule (2.5), e.g., the
first arguments of happensAt(walking(P1), T) and initiatedAt(moving(P1 ,P2)= true,T) are
walking(P1) and moving(P1 ,P2)= true, which are not constants or variables. We use reifi-
cation, i.e., treat an expression of a first-order language, like event walking(P1) or fluent
moving(P1 ,P2), as a concrete object of the domain (see Section 2.4 in [Mueller, 2015]). In
the case of an FVP, such as moving(P1 ,P2)= true, we apply reification one step further,
by constructing a domain object corresponding to the FVP. As a result, events and FVPs
are treated as terms, and thus our Event Calculus formulation does not violate the syntax
of logic programming.

The Event Calculus is a logic programming formalism that allows us to monitor the events
that take place over time and the changes in the values of fluents that come as a result
of these events. Thus, the Event Calculus constitutes a suitable formalism for temporal
pattern matching over streams. However, reasoning directly with the Event Calculus can
be inefficient. In the next section, we highlight some inefficiencies of the Event Calculus,
and describe an Event Calculus dialect that is optimised for stream reasoning.

2.3 The Run-Time Event Calculus (RTEC)

The Event Calculus dialect we described in Section 2.2 is not suitable for reasoning over
data streams. For example, the Event Calculus may need to reason over the entire
history of the stream for each new event arrival, which is not feasible in a streaming
setting. In rule (2.2), e.g., in order to derive holdsAt(F =V ,T), a reasoner may attempt
to prove initiatedAt(F =V ,Ts) at every time-point Ts that is before T , despite the fact that
the only initiation of F =V that is required to prove holdsAt(F =V ,T) is the one that is
the closest to T . The redundant computations of initiatedAt(F =V ,Ts) queries at every
time-point prior to T may lead to an unmanageable computational overhead. Moreover,
the Event Calculus may perform several redundant computations in the common
cases where multiple domain-specific rules share common premises. Suppose,
e.g., that the condition holdsAt(close(P1 ,P2)= true,T) of rule (2.5) appears as a
condition of multiple initiatedAt/terminatedAt rules, resulting in the re-evaluation of
holdsAt(close(P1 ,P2)= true,T) every time such a rule is invoked.

To address these issues, the Run-Time Event Calculus (RTEC) extends the Event Calcu-
lus with optimisation techniques for stream reasoning [Artikis et al., 2015]. We motivate
RTEC and provide an informal description of its key features. (See Section 3.1 for a formal
account of RTEC.)

RTEC is interval-based, i.e., it computes the maximal intervals during which FVPs hold
continuously, instead of employing point-based reasoning, which is costly over long time-

45 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

lines. In order to handle large volumes of events that may span over a long period of
time, RTEC employs ‘windowing’ and ‘forgetting’, isolating parts of the stream (windows)
and reasoning over the information in each window independently. Moreover, in order to
avoid re-computations, RTEC caches the maximal intervals of FVPs that were computed
at previous steps. We describe the key features of RTEC, following [Artikis et al., 2015].

Representation. RTEC derives the list of maximal intervals I during which an FVP
F =V holds continuously. RTEC employs a new predicate called holdsFor, where
holdsFor(F =V , I) denotes that F =V holds continuously in the maximal intervals of list
I .

RTEC features two types of fluents: simple and statically determined. Simple fluents are
specified based on domain-dependent initiatedAt and terminatedAt rules (see, e.g., rules
(2.5)–(2.7)), and follow the commonsense law of inertia, as specified by rules (2.1)–(2.4).
In other words, the simple fluents of RTEC are defined in the same way as the fluents of
our Event Calculus dialect. In order to compute the maximal intervals of an FVP F =V ,
where F is a simple fluent, RTEC employs a domain-independent definition of holdsFor.
According to this definition, RTEC first computes the initiation points of F =V by evaluat-
ing the initiatedAt rules for F =V . Then, RTEC computes all time-points T at which F =V
is ‘broken’, i.e., F =V is terminated or F is initiated with a value other than V . These
are the termination points of F =V . Subsequently, RTEC constructs the list of maximal
intervals I of F =V by pairing each initiation point Ts of F =V with the first termination
point Tf after Ts , ignoring every intermediate initiation point between Ts and Tf .

The maximal intervals of a statically determined fluent are specified based on a domain-
dependent holdsFor rule. Consider the following example from human activity recognition:

Example 2 (moving as a Statically Determined Fluent (after [Artikis et al., 2015])): The
following rule is an alternative definition for the FVP ‘moving(P1 ,P2)= true’ as a statically
determined fluent:

holdsFor(moving(P1 ,P2)= true, I)←
holdsFor(walking(P1)= true, I1),
holdsFor(walking(P2)= true, I2),
holdsFor(close(P1 ,P2)= true, I3),
intersect_all([I1 , I2 , I3], I).

(2.8)

Lists I1 , I2 and I3 contain, respectively, the maximal intervals during which P1 is walking,
P2 is walking, andP1 andP2 are close to each other. Rule (2.8) states that list I , containing
the maximal intervals during which moving(P1 ,P2)= true holds continuously, is computed
as the intersection of the maximal intervals in I1 , I2 and I3 . ♢

In Example 2, the definition of moving(P1 ,P2) includes the predicate intersect_all, i.e., an
interval manipulation construct of RTEC. The language of RTEC provides three interval
manipulation constructs: union_all, intersect_all and relative_complement_all. union_all(L, I)
(resp. intersect_all(L, I)) computes the list of maximal intervals I as the union (intersection)
of all lists of maximal intervals of list L. relative_complement_all(I ′,L, I) computes the list
of maximal intervals I by removing from the maximal intervals of list I ′ all time-points
included in some list of maximal intervals of list L. Figure 2.1 presents an illustration of

P. Mantenoglou 46

Reasoning over Complex Temporal Specifications and Noisy Data Streams

I1
I2
I3

Iu
Ii
Ic

union all([I1 , I2 , I3], Iu)

intersect all([I1 , I2 , I3], Ii)

relative complement all(I1 , [I2 , I3], Ic)

Time

Figure 2.1: Interval manipulation constructs of RTEC. I1 , I2 and I3 (resp. Ic, Ii and Iu) are
input (output) lists of maximal intervals.

the interval manipulation constructs of RTEC.

Reasoning. RTEC employs a simple caching mechanism to avoid unnecessary
re-computations. This caching mechanism leverages the hierarchical organisation of the
rules defining FVPs in an RTEC program. RTEC processes such FVP hierarchies in a
bottom-up manner, computing and caching the intervals of FVPs as the execution moves
up in the hierarchy. This way, the intervals of the FVPs that are required for
the processing of another FVP are fetched from the cache without the need for
re-computation.

RTEC performs continuous query processing to compute the maximal intervals of FVPs.
At each ‘query time’ qi , the events that fall within a specified sliding window (qi−ω, qi] are
taken into consideration, while all other events are discarded/‘forgotten’. This ensures that
the cost of reasoning depends on the size of the window ω and not on the complete stream.
ω and the temporal distance between two consecutive query times, i.e., the ‘step’ qi−qi−1 ,
are parameters that may be manually chosen or optimised to meet the requirements of a
given application. In the case that events arrive at RTEC out-of-order, e.g., due to variable
time lags in network transmissions, it is preferable to make ω longer than the step. This
way, we may compute, at qi , the effects of events that took place in (qi−ω, qi−1], but
arrived after qi−1 .

RTEC captures several operators that are commonly required to express complex tem-
poral patterns, such as conjunction, disjunction, negation and temporal persistence. To-
wards high efficiency and minimal reasoning latency, RTEC employs bottom-up caching
for hierarchical patterns and windowing. Moreover, RTEC has proven highly efficient in
challenging, real-world applications, such asmaritime situational awareness, where RTEC
was able to reason over windows spanning 16 hours and including, on average, over 3
million events, in order to compute the maximal intervals of composite maritime activities,
in approximately 10 minutes [Pitsikalis et al., 2019], and commercial fleet management,
where RTEC managed to reason over 16-hour windows containing, on average, 1.5 mil-
lion events in approximately 5 minutes [Tsilionis et al., 2022]. However, there are several

47 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 2.2: Seven relations of Allen’s interval algebra.

Relation Definition Illustration

before(i s , i t) f (i s) < s(i t)
i s i t

meets(i s , i t) f (i s) = s(i t)
i s i t

starts(i s , i t) s(i s) = s(i t),
f (i s) < f (i t)

i s

i t

finishes(i s , i t) s(i s) > s(i t),
f (i s) = f (i t)

i s

i t

during(i s , i t) s(i s) > s(i t),
f (i s) < f (i t)

i s

i t

overlaps(i s , i t)
s(i s) < s(i t),
f (i s) > s(i t),
f (i s) < f (i t)

i s

i t

equal(i s , i t) s(i s) = s(i t),
f (i s) = f (i t)

i s

i t

types of temporal patterns that are not supported by the language of RTEC. In Chapter 3,
we propose three extensions to the language of RTEC, broadening the set of supported
temporal specifications, while maintaining high reasoning efficiency. One of these exten-
sions concerns the relations of Allen’s interval algebra, which are not supported by RTEC.
In the next section, we outline the relations of Allen’s algebra.

2.4 Allen’s Interval Algebra

Allen’s interval algebra specifies thirteen jointly exhaustive and pairwise disjoint relations
among ordered pairs of intervals [Allen, 1984]. These relations are qualitative, in the
sense that they are defined based on the relative temporal position of the two intervals,
and not their numeric values. Given an ordered pair of intervals (i s , i t), we can determine
the relation it satisfies by applying a set of arithmetic comparisons on the endpoints of
intervals i s and i t . Table 2.2 presents the Allen relations before, meets, starts, finishes,
during, overlaps and equal. The remaining six relations are the ‘inverse’ relations; equal
does not have an inverse relation. The second column of Table 2.2 shows the conditions
under which each Allen relation is satisfied. i s and i t express intervals, while s(i) and f (i)
denote the start and end endpoint of interval i , respectively.

Allen relations are often required to express the temporal specifications found in modern
applications [Körber et al., 2021; Awad et al., 2022]. RTEC, however, does not support

P. Mantenoglou 48

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Allen relations, as it is not possible to express these relations using the interval manipula-
tion constructs of RTEC, i.e., union_all, intersect_all, and relative_complement_all. Consider,
e.g., the lists of intervals S and T , and the computation of the interval pairs (i s , i t), where
i s ∈ S and i t ∈ T , satisfying the before relation. intersect_all([S, T], []) states that for every
interval pair (i s , i t), such that i s ∈ S and i t ∈ T , it holds that i s ∩ i t = ∅. Therefore, i s is
before i t , or vice versa. It is impossible, however, to distinguish between the two cases.

In Section 3.4, we propose an extension to the language of RTEC in order to support Allen
relations, and provide the necessary reasoning algorithms for computing Allen relations
over data streams. In the next section, we provide a literature review on stream reasoning
systems.

2.5 Literature Review

We review frameworks that perform temporal pattern matching without noisy events; we
discuss frameworks handling noisy events in Section 5.4. We focus on frameworks that
employ a logic-based formalism, possibly incorporating the Event Calculus, and/or sup-
port interval-based reasoning. Approaches that update temporal patterns by means of
machine learning techniques (e.g., [Katzouris and Artikis, 2020; Katzouris et al., 2023]),
are complementary to our work, and thus not discussed here. Table 2.3 highlights the
most prominent frameworks of our discussion, in the sense that they fulfil several of the
requirements we outlined in Chapter 1, and compares them in terms of their underlying
formalism and temporal model, as well as their support for background knowledge, nega-
tion, hierarchical patterns, stream reasoning, cyclic dependencies, events with delayed
effects and Allen relations.

The literature contains numerous automata-based frameworks for temporal patternmatch-
ing over streams [Wu et al., 2006; Demers et al., 2007; Poppe et al., 2019; Zhao et al.,
2021; Alevizos et al., 2022]. CORE is a recently proposed automata-based engine that
employs a compact data structure for maintaining previous derivations, leading to low
reasoning complexity, and has proven to outperform other automata-based engines by
orders of magnitude [Bucchi et al., 2022]. The language of CORE exhibits a formal se-
mantics and supports an interval-based representation for situations of interest. However,
CORE has limited expressivity, as it supports only unary relations, applied only to the last
event read. Thus, CORE cannot express, e.g., the pattern of ‘moving together’ from the
human activity recognition domain (see (2.5)–(2.7)), which involves two entities. More-
over, although exhibiting a compositional semantics, CORE does not support hierarchies,
in the sense that patterns are defined only over instantaneous properties. A comparison
of automata-based and logic-based frameworks, including RTEC, may be found in the
survey of Giatrakos et al. [2020].

Several approaches employ extensions of SQL for handling data streams [Terry et al.,
1992; Arasu et al., 2006; Bai et al., 2006; Körber et al., 2021; Zervoudakis et al., 2021;
Awad et al., 2022]. The StreamMill system [Laptev et al., 2016] is based on ESL, i.e., a
minimal extension of SQL that supports stream reasoning [Law et al., 2004]. ESL is re-

49 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 2.3: A comparison of state-of-the-art frameworks. B.K.: Background Knowledge,
N.: Negation, H.: Hierarchies, S.R.: Stream Reasoning, C.: Cycles, D.E.: Events with
Delayed Effects, A.: Allen Relations, ✓⋆: Although lacking a built-in represenation and
optimised treatment, the underlying language is expressive enough to capture this feature.

Approach Formalism Temporal Model B.K. N. H. S.R. C. D.E. A.

RTEC Logic programming Intervals, Explicit,
Event Calculus. ✓ ✓ ✓ ✓

CORE Complex Event
Automata Intervals, Implicit. ✓

Ticker LARS Points, Explicit. ✓ ✓ ✓

GKL-EC Logic programming Points, Explicit,
Event Calculus. ✓ ✓ ✓ ✓

s(CASP) Answer set
programming

Points, Explicit,
Event Calculus. ✓ ✓ ✓⋆ ✓

Fusemate
Logic programming
and description logic

ALCIF

Points, Explicit,
Event Calculus. ✓ ✓ ✓ ✓ ✓⋆

jRECfi Logic programming Intervals, Explicit,
Event Calculus. ✓ ✓ ✓ ✓ ✓⋆ ✓

jRECrbt Logic programming Intervals, Explicit,
Event Calculus. ✓ ✓ ✓ ✓ ✓⋆

D2IA Interval-based
extension of CQL. Intervals, Implicit. ✓ ✓ ✓ ✓

TPStream SQL-like query
language. Intervals, Implicit. ✓ ✓

ETALIS

Rule-based
language translated

into logic
programming.

Intervals, Implicit. ✓ ✓ ✓ ✓

Approach Formalism Temporal Model B.K. N. H. S.R. C. D.E. A.

P. Mantenoglou 50

Reasoning over Complex Temporal Specifications and Noisy Data Streams

stricted to non-blocking queries, i.e., queries that can be answered incrementally, as new
stream items arrive, without having to wait for an arbitrary amount of time on new item
arrivals [Zaniolo, 2012]. Although SQL-based formalisms are expressive enough to cap-
ture complex temporal constraints, the resulting expressions are commonly highly compli-
cated, and hard to understand and optimise (see, e.g., Examples 2 and 3 in [Aghasadeghi
et al., 2024]).

There are also logic-based stream reasoning frameworks. The Chronicle Recognition
System (CRS) represents situations of interest as sets of events that are associated with
time constraints [Dousson and Maigat, 2007]. The language of CRS supports several
operators, including sequencing, iteration and negation. TESLA provides a logic-based
event specification language that supports negation, aggregates, iteration and event hier-
archies [Cugola and Margara, 2010]. Contrary to logic programming-based approaches,
CRS and TESLA do not support background knowledge. See [Artikis et al., 2012b] for a
tutorial on logic-based event recognition.

Some logic-based systems restrict attention to (variants of) Datalog. MeTeoR [Walega
et al., 2023] extends a fragment of DatalogMTL [Walega et al., 2019] with windowing. Me-
TeoR does not support negation, meaning that several features of RTEC, such as default
persistence based on the law of inertia and the relative_complement_all operator, cannot be
expressed in MeTeoR. Logica is a Datalog-like programming language that compiles into
SQL and runs on BigQuery1. In Chapter 4, we present an experimental comparison of
Logica with other frameworks. DDlog [Ryzhyk and Budiu, 2019] is an incremental version
of Datalog that handles continuously-arriving updates of input facts. DCDatalog [Wu et
al., 2022] and BigDatalog [Shkapsky et al., 2016] are optimised with parallelisation tech-
niques for recursive queries. DDLog, DCDatalog and BigDatalog reason over atemporal
data, and thus cannot be employed directly on temporal patterns.

One of the most prominent logic-based languages is LARS, i.e., an extension of Answer
Set Programming (ASP), featuring built-in window constructs for stream reasoning [Beck
et al., 2018]. Fragments of the LARS language are supported by a family of stream rea-
soners, including Ticker [Beck et al., 2017] and Laser [Bazoobandi et al., 2017]. Laser
employs a fixed-point materialisation of restricted LARS formulas to handle data streams.
The empirical analysis of Beck et al. [2018] showed that Laser outperforms other related
reasoners [Barbieri et al., 2010; Phuoc et al., 2011], including Ticker. Moreover, Eiter
et al. [2019] presented a distributed architecture using ‘stream stratification’ [Beck et al.,
2018] in order to decompose LARS programs into sub-programs that may be evaluated
in parallel. Laser and the distributed LARS framework, however, are restricted to globally
stratified logic programs, i.e., stratified programs where all ground atoms of the Herbrand
base that have the same predicate are in the same stratum. RTEC event descriptions are
locally stratified logic programs, which comprise a broader class than globally stratified
logic programs [Przymusinski, 1988]. In the language of Ticker, we were able to express
an event description that corresponds to a locally stratified logic program in RTEC, and, as
a result, were able to include Ticker in our empirical comparisons (see Chapter 4). More-

1https://github.com/EvgSkv/logica

51 P. Mantenoglou

https://github.com/EvgSkv/logica

Reasoning over Complex Temporal Specifications and Noisy Data Streams

over, although the LARS language can express rules with interval-based derivations, such
rules are not included in the fragments of LARS supported by the aforementioned LARS-
based reasoners [Beck et al., 2018].

A key difference between our work and the aforementioned frameworks lies in the use
of the Event Calculus, which allows us to develop expressive temporal specifications for
a wide range of stream reasoning applications, such composite event recognition and
multi-agent systems. At the same time, the built-in representation of inertia allows us to
develop succinct specifications, supporting code maintenance and reasoning efficiency.
With the use of the Event Calculus, one may develop intuitive specifications, facilitating
the interaction between data scientist and domain (e.g. maritime) expert, and pave the
way for explainability. Furthermore, we may introduce extensions to the language of the
Event Calculus with optimised reasoning algorithms, like the language constructs and
reasoning algorithms that we present in Chapter 3, in order to meet the requirements of
contemporary applications concerning expressivity and reasoning efficiency.

Various computational frameworks based on the Event Calculus have been proposed in
the literature. The ‘Macro-Event Calculus’ [Cervesato and Montanari, 2000], e.g.,
leverages the concept of ‘macro-event’ to support composite/macro event operators
such as sequence, disjunction, parallelism and iteration. The ‘Interval-based Event
Calculus’ [Paschke and Bichler, 2008] supports the representation of durative events
and includes various event operators, such as sequence, concurrency and negation.
The F2LP system translates a reformulation of the Event Calculus into answer set
programs, so that efficient answer set programming solvers may be used for
reasoning [Lee and Palla, 2012].

Srinivasan et al. [2022] proposed an Event Calculus dialect with an integrated domain
specification for ‘biological feedback loops’ [Thomas and d’Ari, 1990], which follows the
Generalised Kinetic Logic [Thomas, 1991], in order to predict the evolution of such loops.
We call the resulting logic program GKL-EC. GKL-EC employs a logic programming im-
plementation of the Event Calculus, and thus seamlessly supports background knowledge
and negation-by-failure. The value of a variable participating in a feedback loop typically
depends on the value of the same variable at an earlier time-point. Moreover, the value
of a variable changes with a specified time delay after the emission of a set of specified
biological signals. To address these issues, GKL-EC was designed to handle cyclic de-
pendencies and events with delayed effects. Contrary to RTEC, GKL-EC does not feature
windowing or optimised processing for hierarchical event description, and thus does not
support stream reasoning.

s(CASP) is a query-driven execution model for ASP with constraints, supporting Event
Calculus-based reasoning [Arias et al., 2022]. Commonly, ASP solvers ground the in-
put program, which requires that the domains of the variables of the program are dis-
crete [Lee and Palla, 2012; Gebser et al., 2019]. In contrast, s(CASP) evaluates ASP pro-
grams without grounding them, and thus seamlessly supports dense domains. Moreover,
s(CASP) is able to compute answer sets containing non-ground variables and constraints,
as well as partial models containing only the fragment of a stable model that is necessary
to answer a given query. The Event Calculus dialect adopted by s(CASP) includes the

P. Mantenoglou 52

Reasoning over Complex Temporal Specifications and Noisy Data Streams

trajectory(F1 ,T1 ,F2 ,T2) predicate, expressing that if a fluent F1 is initiated at time T1 and
continues to hold until time T1+T2 , then fluent F2 holds at T1+T2 [Miller and Shanahan,
2002]. Using this predicate, s(CASP) may express events with delayed effects. Con-
trary to RTEC, s(CASP) does not include techniques for handling data streams, such as
windowing and optimised reasoning for compositional/hierarchical patterns. Moreover,
s(CASP) employs a point-based representation for its derivations, as opposed to the
interval-based representation of RTEC, leading to slower reasoning (see our empirical
comparisons in Section 4.2).

The aforementioned Event Calculus-based frameworks are not suitable for stream reason-
ing. Fusemate is a logic programming framework for reasoning over data streams [Baum-
gartner, 2021b]. Fusemate integrates Event Calculus-based reasoning with a descrip-
tion logic, thus treating ABoxes as Event Calculus fluents and modelling their persis-
tence through time [Baumgartner, 2021a]. By taking advantage of the language of logic
programming, Fusemate seamlessly supports background knowledge and negation-by-
failure, while the use of the Event Calculus allows for an explicit representation of time
and offers an intuitive representation of time-varying properties. Moreover, the language
of Fusemate is restricted to a class of stratified programs, where cyclic dependencies with
negation are allowed, provided that, as we follow the induced dependencies, the values
of the time arguments of the predicates we encounter are decreasing. This way, Fuse-
mate can evaluate a program by following one of its stratifications bottom-up, while avoid-
ing re-computations, paving the way for the efficient processing of hierarchical patterns.
Contrary to RTEC, Fusemate adopts a point-based Event Calculus dialect, and performs
time-point-based query evaluation, leading to a larger number of computations and higher
reasoning times than RTEC (see Section 4.2).

The ‘Reactive Event Calculus’ (REC) [Chesani et al., 2009; Chesani et al., 2010] adopts
a lightweight version of the update-time reasoning of the ‘Cached Event Calculus’ [Chit-
taro and Montanari, 1996]. This way, REC caches and revises fluent intervals incremen-
tally, upon the arrival of (delayed) events, paving the way for stream reasoning. There
are several frameworks that use REC [Chesani et al., 2013; Montali et al., 2013; Fal-
cionelli et al., 2019], that are typically based on a Java-Prolog implementation of REC
called jREC [Bragaglia et al., 2012]. jREC is based on logic programming, and supports
background knowledge and negation. Moreover, jREC computes situations of interest in
temporal intervals, and employs an incremental caching and updating schema for derived
situations, providing support for event hierarchies. We focus on two versions of jREC,
i.e., jRECfi and jRECrbt. jRECfi supports events with delayed effects and has been used
for monitoring the effects of such events in the maritime domain [Montali et al., 2013].
jRECrbt improves upon the efficiency of retrieving and updating fluent intervals in REC via
an indexing schema that uses red-black trees [Falcionelli et al., 2019]. jRECrbt is more
efficient than jRECfi; however, jRECrbt does not support events with delayed effects. In
Chapter 4, we compare our extensions of RTEC against jRECfi and jRECrbt.

One of the key advantages of RTEC and jREC is their interval-based semantics. In stream
reasoning and composite event recognition applications, situations of interest are typi-
cally durative and naturally represented using temporal intervals [Giatrakos et al., 2020].

53 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Using sets of individuals time-points to represent occurrences of durative situations fails
to capture ongoing activities and leads to semantic ambiguities in cases of composi-
tional/hierarchical patterns [Galton and Augusto, 2002; Paschke, 2005; White et al., 2007].
In the following, we discuss frameworks that model durative situations using temporal in-
tervals.

D2IA augments the Big Data stream processing engine Flink with interval-based seman-
tics [Awad et al., 2022]. The language of D2IA extends CQL [Arasu et al., 2006] with
a set of temporal operators for mapping streams of instantaneous events to streams of
durative events, and vice versa, as well as reasoning over durative events with Allen re-
lations. Moreover, D2IA employs windowing, in order to support streaming applications.
Compared to RTEC, the language of D2IA has several limitations. In D2IA, e.g., it is not
straightforward to combine instantaneous and durative events in the conditions of a pat-
tern, while negation is limited to the absence of a specified type of instantaneous event
between the occurrences of two other events, and background knowledge is not sup-
ported.

TPStream [Körber et al., 2021] transforms instantaneous events into durative situations
of interest, and computes temporal patterns, including Allen relations, over the intervals of
the derived situations. In TPStream, situations cannot be defined in terms of multiple event
types or background knowledge. For example, it is not possible to express the ‘moving to-
gether’ activity from the human activity recognition domain (see rules (2.5)–(2.7)). ISEQ [Li
et al., 2011] is a temporal operator that processes streams of durative events using tem-
poral windows and outputs sequences of specified event types that satisfy a set of Allen
relations. ISEQ does not allow for the derivation of durative situations from instantaneous
events. Unlike RTEC, neither ISEQ nor TPStream supports relational patterns, such as
‘moving together’, which involves two entities of the domain. This is a significant limitation
for modern applications. ETALIS [Anicic et al., 2012] is an event-driven stream reasoning
system that supports Allen relations and incorporates background knowledge in temporal
patterns. ETALIS does not allow for the explicit representation of time, complicating the
specification of fluent value changes, including the formalisation of the common-sense law
of inertia.

RTEC exhibits many desirable features for stream reasoning, such as an expressive, for-
mal temporal specification language, an efficient treatment of compositional patterns, an
interval-based semantics, and an optimised processing of the input streamwith a bounded
memory using windowing. Fluent-value pair (FVP) hierarchies, i.e., FVPs appearing in the
definitions of other FVPs, allow for structured, succinct representations, and thus code
maintenance. A hierarchy of FVPs may exhibit a structure where FVPs participate in the
definition of multiple other FVPs. RTEC can naturally handle hierarchies, paving the way
for caching, and thus avoiding unnecessary re-computations. Point-based reasoning, as
opposed to interval-based reasoning—see, e.g., ASTRO [Das et al., 2018] and the LARS
reasoners Ticker and Laser [Beck et al., 2018]—leads to unintended semantics when rea-
soning over hierarchies [Galton and Augusto, 2002; Paschke, 2005; White et al., 2007].
Moreover, RTEC has proven highly efficient in contemporary applications with complex
temporal specifications and large, real data streams [Artikis et al., 2015; Pitsikalis et al.,

P. Mantenoglou 54

Reasoning over Complex Temporal Specifications and Noisy Data Streams

2019; Tsilionis et al., 2022].

In a parallel line of work, Tsilionis et al. [2022] presented an extension of RTEC that op-
timises reasoning when input events arrive with a variable delay, as well as when input
events are revised or retracted. This extension does not broaden the set of temporal pat-
terns supported by RTEC, and thus it is orthogonal to the three extensions to the language
of RTEC that we propose in Chapter 3.

Based on our literature review, RTEC is one of the few frameworks that support stream
reasoning with an Event Calculus-style knowledge representation, an explicit time model
including both points and intervals, and a language with a formal and declarative seman-
tics, supporting background knowledge, negation and pattern hierarchies. Moreover, as
we demonstrate empirically in Section 4.2, RTEC is the most efficient among the Event
Calculus-based frameworks found in the literature. For these reasons, we chose to extend
the range of temporal specifications supported by RTEC, paving the way for expressive
stream reasoning with the Event Calculus. In the next chapter, we present our three ex-
tensions of RTEC.

55 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 56

Reasoning over Complex Temporal Specifications and Noisy Data Streams

3. STREAM REASONING OVER COMPLEX TEMPORAL
SPECIFICATIONS

RTEC is a formal computational framework that extends the Event Calculus with optimisa-
tion techniques, aiming at highly efficient stream reasoning. We propose RTEC◦, RTEC→

and RTECA, i.e., three frameworks that are built by extending RTEC, in order to sup-
port cyclic dependencies, events with delayed effects and Allen relations, respectively.
RTEC◦, RTEC→ and RTECA broaden the set of temporal patterns supported by RTEC,
while supporting highly efficient reasoning over data streams. Section 3.1 provides a for-
mal account of RTEC. Afterwards, Sections 3.2, 3.3 and 3.4 present RTEC◦, RTEC→ and
RTECA.

3.1 A Formal Account of RTEC

First, we provide a formal description of the language of RTEC. Afterwards, we present
a structure called ‘dependency graph’, i.e., a directed acyclic graph modelling the depen-
dencies among the fluent-value pairs (FVP)s in the specifications of a domain. With the
help of the dependency graph, we identify the semantics of an RTEC program.

Syntax. RTEC features events, simple fluents and statically determined fluents. The tem-
poral specifications of a domain in RTEC, containing a simple or a statically determined
fluent definition for each situation of interest of the domain, form an event description.

Definition 4 (Event Description in RTEC): An event description in RTEC is a set of:

1. Ground happensAt facts, expressing a stream of event instances.
2. Rules with head initiatedAt(F =V ,T1 ,T ,T2) or terminatedAt(F =V ,T1 ,T ,T2), ex-

pressing the effects of events on an FVP F =V of a simple fluent F .
3. Rules with head holdsFor(F =V , I), defining an FVP F =V of a statically determined

fluent F in terms of other FVPs. ■
Definition 5 (Syntax of Simple Fluent Definitions in RTEC): The rules defining
initiatedAt predicates in RTEC have the following syntax:

initiatedAt(F =V , T ′, T , T ′′)←
happensAt(E1 , T),T ′ ≤ T < T ′′[[,
[not] happensAt(E2 , T), . . . ,
[not] happensAt(Ei , T),
[not] holdsAt(F1 =V1 , T), . . . ,
[not] holdsAt(Fk =Vk , T),
atemporal_constraints]].

(3.1)

The first body literal of an initiatedAt rule is a positive happensAt predicate; this is fol-
lowed by a possibly empty set of positive/negative happensAt and holdsAt predicates, and
atemporal_constraints, i.e., a conjunction of atemporal predicates expressing background

57 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

knowledge, denoted by ‘[[]]’. ‘not’ expresses negation-by-failure, while ‘[not]’ denotes that
‘not’ is optional. All (head and body) predicates that have a time argument are evaluated
on the same time-point T . T ′ and T ′′, which are added at compile-time in a process
transparent to the user, specify the temporal range of T . T ′ and T ′′ are always ground in
queries, allowing search optimisations through indexing. terminatedAt rules have the same
form. ■
Definition 6 (Syntax of Statically Determined Fluent Definitions in RTEC): The rules
defining statically determined fluents in RTEC have the following syntax:

holdsFor(F =V , In+m)←
holdsFor(F1 =V1 , I1)[[,
holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn =Vn , In),
intervalConstruct(L1 , In+1), . . .
intervalConstruct(Lm , In+m),
atemporal_constraints]].

(3.2)

The first body literal of a holdsFor rule defining F =V is a holdsFor predicate express-
ing the maximal intervals of an FVP other than F =V . This is followed by a possibly
empty list, denoted by ‘[[]]’, of holdsFor predicates for other FVPs, interval manipulation
constructs, expressed by intervalConstruct in formulation (3.2), and atemporal constraints
expressing background knowledge. intervalConstruct(Lj , In+j) may be union_all(Lj , In+j),
intersect_all(Lj , In+j) or relative_complement_all(Ik ,Lj , In+j). Ik , where k < n + j , is a list of
maximal intervals appearing earlier in the body of the rule, and list Lj contains a subset of
such lists. The output list In+m contains the maximal intervals during which F =V holds
continuously. ■

While statically determined fluent definitions are less expressive than simple fluent defini-
tions, they have the advantages of being more compact and less costly to reason with. A
statically determined fluent definition contains one rule, constructing the maximal intervals
of an FVP based on the maximal intervals of other FVPs, using the interval manipulation
constructs of RTEC. In contrast, in order to construct a simple fluent definition, we have
to identify the various conditions under which a situation of interest is initiated and ter-
minated, so that its maximal intervals can then be computed by the domain-independent
holdsFor predicate of RTEC. Moreover, based on the worst-case time complexity analysis
presented in [Artikis et al., 2015], the cost of deriving the maximal intervals of a statically
determined fluent is linear to the window size ω, while maximal interval computation for a
simple fluent is quadratic to ω. Therefore, whenever possible, a situation of interest should
be defined using a statically determined fluent.

Semantics. An event description in RTEC defines a dependency graph, expressing the
relationships between the FVPs of the event description.

Definition 7 (Dependency Graph in RTEC): The dependency graph of an event descrip-
tion in RTEC is a directed graph G =(V , E), where:

1. V contains one vertex vF =V for each FVP F =V .

P. Mantenoglou 58

Reasoning over Complex Temporal Specifications and Noisy Data Streams

2. E contains an edge (vFj =Vj , vFi =Vi) iff
• there is an initiatedAt or terminatedAt rule for Fi =Vi having holdsAt(Fj =Vj ,T)
as one of its conditions, or

• there is a holdsFor rule for Fi =Vi having holdsFor(Fj =Vj , I) as one of its con-
ditions. ■

RTEC restricts attention to event descriptions defining acyclic dependency graphs
whereby it is possible to define a function level that maps all FVPs F =V to the
non-negative integers according to the following definition:

Definition 8 (Vertex Level and FVP Level in RTEC): Given a directed acyclic graph, the
level of a vertex v is equal to:

1. 1 , if v has no incoming edges.
2. n, where n > 1 , if v has at least one incoming edge from a vertex of level n−1 , and

zero or more incoming edges from vertices of levels lower than n−1 .

Suppose that an event description in RTEC defines an acyclic dependency graph
G =(V , E) and that vF =V ∈ V is the vertex corresponding to FVP F =V . The level of
F =V is equal to the level of vertex vF =V . ■
Proposition 1 (Semantics of RTEC): An event description in RTEC that defines an
acyclic dependency graph is a locally stratified logic program [Artikis et al., 2015]. ▲

A local stratification of an event description may be constructed as follows. The first stra-
tum contains all groundings of happensAt. The remaining strata are formed by following,
in a bottom-up fashion, the FVP levels of the dependency graph. Since an RTEC event
description that define an acyclic dependency graph is a locally stratified logic program, it
admits a unique perfect model (see Section 2.1).

We propose three extensions of RTEC. In Section 3.2, we relax the constraint that the
dependency graph must be acyclic. In Section 3.3, we introduce a way to express the
delayed effects of events. In Section 3.4, we extend statically determined fluent definitions
(see formulation (3.2)), in order to support Allen relations as body conditions and interval
constructors.

3.2 RTEC◦: Reasoning over Specifications with Cyclic Dependencies

We propose RTEC◦, i.e., an extended version of RTEC that supports event descriptions
with cyclic dependencies. We motivate the need for handling cyclic dependencies, and
study the semantics of RTEC◦. Subsequently, we present the reasoning algorithms of
RTEC◦ for handling cyclic dependencies. We prove the correctness of the proposed al-
gorithms, and outline their complexity.

59 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

3.2.1 Motivation

Temporal specifications, such as those found in composite event recognition and multi-
agent systems, often include cyclic dependencies.

Example 3 (Cyclic Dependencies in Temporal Specifications): Consider, e.g., the
specification of the status of a motion in a multi-agent voting protocol (see Section 1.1.3):

initiatedAt(status(M)= proposed , T ′, T , T ′′)←
happensAt(propose(P ,M), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= null , T).

(3.3)

initiatedAt(status(M)= voting , T ′, T , T ′′)←
happensAt(second(S ,M), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= proposed ,T).

(3.4)

initiatedAt(status(M)= voted , T ′, T , T ′′)←
happensAt(close_ballot(C ,M),T),T ′ ≤ T < T ′′,
holdsAt(status(M)= voting , T).

(3.5)

initiatedAt(status(M)= null , T ′, T , T ′′)←
happensAt(declare(C ,M ,R), T), T ′ ≤ T < T ′′,
holdsAt(status(M)= voted , T).

(3.6)

The first condition of each rule expresses an agent action; declare(C ,M ,R), e.g., ex-
presses that agent C declared the outcome R of voting on motion M . In all actions, the
first argument denotes the agent that performed the action, while the second argument
denotes the motion. The formalisation above expresses the various stages of a motion
M : proposed (the motion needs to be seconded before voting may start), voting (voters
may cast their votes), voted (voting has ended and the chair may declare the outcome)
and null . The effects of an agent message on status(M) depend on the value of this flu-
ent at the time of issuing the message. A message propose(P ,M), e.g., from a proposer
P results in status(M)= proposed provided that status(M)= null at the time of sending
propose(P ,M). Performing this action when status(M) ̸= null has no effect on status(M).
The effects of the remaining actions are formalised similarly. The specification of status
includes an initial value for this fluent—this is omitted to simplify the presentation. ♢

The top part of Figure 3.1 displays the dependency graph defined by the event description
of a voting protocol. This graph contains a cycle which is formed by rules (3.3)–(3.6). As
another example, the bottom part of Figure 3.1 displays a dependency graph of NetBill,
a protocol we described in Section 1.1.3 for exchanging encrypted digital goods [Sirbu,
1997; Artikis and Sergot, 2010], also including a cycle. In this specification, a contract
concerning digital goods may be awarded to an agent that has not been suspended, while
an agent may be (temporarily) suspended when not fulfilling the obligations of some other
contract.

RTEC cannot handle cyclic dependencies. When computing the initiation points of, e.g.,
status(M)= proposed , we cannot assume, as RTEC does, that the FVPs appearing in
the body of rule (3.3) have been processed and thus their intervals can be fetched from

P. Mantenoglou 60

Reasoning over Complex Temporal Specifications and Noisy Data Streams

status = proposed

status = voting

status = voted

status =null

auxPer = true

outcome = carried

power = true

voted = aye/nay

voted =null

permission = true

obligation = true

sanctioned = true

permission = false

quote = true

obligation = true

suspended = true

contract = true

power = true

Figure 3.1: Dependency Graphs: voting (top) and NetBill (bottom). In order to simplify
the presentation, we omit the arguments of fluents, group FVPs with the same conditions
into a single node, and display a vertex vj as j . Cycles are coloured red. Apart from the
basic features of these protocols, e.g., motions in voting and quotes for digital goods in
NetBill, the specifications express the normative positions of the agents, such as institu-
tionalised power, permission and obligation, as well as sanctions/suspensions for handling
non-conformance with obligations and the performance of forbidden actions (see Section
1.1.3).

the cache. status(M)= proposed depends on status(M)= null which in turn depends on
status(M)= proposed .

This is not an issue, however, for other Event Calculus dialects, which can process FVPs
with cyclic dependencies. Consider, e.g., the formalisation below:

holdsAt(F =V , T)←
initiatedAt(F =V , qi−ω, Ti , T),
not brokenBetween(F =V , Ti , T).

(3.7)

brokenBetween(F =V , Ti , T)←
terminatedAt(F =V , Ti , Tb , T).

(3.8)

brokenBetween(F =V , Ti , T)←
initiatedAt(F =V ′, Ti , Tb , T), V ̸=V ′.

(3.9)

Rule (3.7) specifies that F =V holds at time-point T if it was initiated at some time-point
Ti between the beginning of the current window qi−ω and T , and has not been ‘broken’
between Ti and T . F =V is broken between Ti and T if it is terminated or F is initiated
with a different value in that interval (see rule (3.8) and (3.9)).

61 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 3.1: Stream reasoning with the Event Calculus. The second column shows the
evaluated predicates and the third column refers to the rules used in their evaluation. We
use ‘?’ to indicate that we will illustrate predicate evaluation, ‘✓’ to express a successful
evaluation, and ‘×’ to denote an unsuccessful evaluation. The predicates in the second
column are indented to distinguish between the head and body atoms of a rule.

Predicate Rule

1 initiatedAt(status(m)= proposed , qi−ω, T , qi) ? (3.3)
2 happensAt(propose(agp ,m), t4) ✓ (3.3), (3.10)
3 holdsAt(status(m)=null , t4) ? (3.3), (3.7)
4 initiatedAt(status(m)=null , qi−ω, Ti , t4) ? (3.7), (3.6)
5 happensAt(declare(agc ,m,not_carried), t3) ✓ (3.6), (3.10)
6 holdsAt(status(m)= voted , t3) ? (3.6), (3.7)
7 initiatedAt(status(m)= voted , qi−ω, T ′

i , t3) ? (3.7), (3.5)
8 happensAt(close_ballot(agc ,m), t2) ✓ (3.5), (3.10)
9 holdsAt(status(m)= voting , t2) ? (3.5), (3.7)
10 initiatedAt(status(m)= voting , qi−ω, T ′′

i , t2) ? (3.7), (3.4)
11 happensAt(second(ags ,m), t1) ✓ (3.4), (3.10)
12 holdsAt(status(m)= proposed , t1) ? (3.4), (3.7)
13 initiatedAt(status(m)= proposed , qi−ω,T ′′′

i , t1) ? (3.7)
14 initiatedAt(status(m)= proposed , qi−ω, qi−ω, t1) ✓ (3.11)
15 brokenBetween(status(m)= proposed , qi−ω, t1) ? (3.7), (3.9)
16 initiatedAt(status(m)= voting , qi−ω, Tb , t1) × (3.9), (3.4)
17 initiatedAt(status(m)= voted , qi−ω, Tb , t1) × (3.9), (3.5)
18 initiatedAt(status(m)=null , qi−ω, Tb , t1) × (3.9), (3.6)
19 brokenBetween(status(m)= proposed , qi−ω, t1) × (3.9), (3.7)
20 holdsAt(status(m)= proposed , t1) ✓ (3.7), (3.4)
21 initiatedAt(status(m)= voting , qi−ω, t1 , t2) ✓ (3.4), (3.7)
22 brokenBetween(status(m)= voting , t1 , t2) × (3.7), (3.9)
23 holdsAt(status(m)= voting , t2) ✓ (3.7), (3.5)
24 initiatedAt(status(m)= voted , qi−ω, t2 , t3) ✓ (3.5), (3.7)
25 brokenBetween(status(m)= voted , t2 , t3) × (3.7), (3.9)
26 holdsAt(status(m)= voted , t3) ✓ (3.7), (3.6)
27 initiatedAt(status(m)=null , qi−ω, t3 , t4) ✓ (3.6), (3.7)
28 brokenBetween(status(m)=null , t3 , t4) × (3.7), (3.9)
29 holdsAt(status(m)=null , t4) ✓ (3.7), (3.3)
30 initiatedAt(status(m)= proposed , qi−ω, t4 , qi) ✓ (3.3)

We may use the domain-independent rules (3.7)–(3.9) in conjunction with the definition
of the status fluent of rules (3.3)–(3.6) for processing streams of agent actions in a voting
procedure and computing the values of the status fluent at each time-point. Consider the
following example:

Example 4 (Processing Cyclic Dependencies with the Event Calculus): Assume that
the current window (qi−ω, qi] consists of the following event stream:

happensAt(second(ags ,m), t1).
happensAt(close_ballot(agc,m), t2).
happensAt(declare(agc,m, not_carried), t3).
happensAt(propose(agp ,m), t4).
where qi−ω < t1 < t2 < t3 < t4 < qi

(3.10)

P. Mantenoglou 62

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Moreover, the initial value of status(M), in the current window, is set to proposed :

initiatedAt(status(M)= proposed , qi−ω, qi−ω, T)←
T > qi−ω.

(3.11)

To compute the maximal intervals for which status(m)= proposed holds continuously, we
first need to compute the initiation points of this FVP. Table 3.1 illustrates this process.
To save space, we omit from this table the evaluation of the second condition (double
inequality) of the initiatedAt and terminatedAt rules (see, e.g., rule (3.3)); moreover, in the
middle part of the table (see lines 14–19) we omit the presentation of the happensAt calls,
while in the lower part of the table (see lines 20–30) we do not show the proof of brokenBe-
tween. A solution to the initiatedAt call of line 1, i.e., a initiation point of status(m)= proposed
in [qi−ω, qi), is shown in line 30 (initiation point: t4). ♢

Rule-set (3.7)–(3.9) constitutes a very inefficient implementation, leading to numerous
unnecessary re-computations. Assume, e.g., that the event stream (3.10) includes an
additional event:

happensAt(propose(agp ,m), t5).
where t4 < t5 < qi

(3.12)

In this case, most predicate calls presented in Table 3.1 would have to be repeated, in
order to determine whether the above event creates new initiation points for
status(m)= proposed . More precisely, the predicate calls presented in lines 1–27 of Table
3.1 would be repeated, with the exception that time-point t4 is replaced by t5 , i.e., the
time-point of the propose event of expression (3.12). Subsequently, the call to
brokenBetween(status(m)= null , t3 , t5) would succeed, since status(m)= null is broken at
t4 , thus leading to no new initiation points for status(m)= proposed . Similarly, additional
messages in the event stream, such as several agents proposing or seconding a motion,
would increase significantly the number of unnecessary re-computations.

Furthermore, consider, e.g., the computation of the maximal intervals for which
status(M)= voting holds continuously, that could follow the computation of the maximal
intervals for which status(M)= proposed . First, we would have to compute the initiation
points of status(M)= voting , i.e.:

initiatedAt(status(M)= voting , qi−ω, T , qi).

To calculate these initiation points, we would have to repeat the computations pre-
sented in lines 10–21 of Table 3.1, i.e., we would have to prove again that
holdsAt(status(M)= proposed , t1). Similarly, to calculate the maximal intervals for which
status(M)= voted , we would have to repeat the computations presented in lines 7–24 of
Table 3.1, for computing the initiation points of this FVP, while to calculate the maximal
intervals for which status(M)= null , we would have to repeat the computations presented
in lines 4–27 of Table 3.1.

To address these issues, we propose RTEC◦, an extended version of RTEC that com-
putes, in an efficient way, the maximal intervals during which a FVP with cyclic depen-
dencies holds continuously. To achieve this, RTEC◦ performs incremental caching when

63 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

processing FVPs in a cycle. Belowwe present the semantics and the reasoning algorithms
of RTEC◦. Afterwards, we prove the correctness of RTEC◦, and outline its complexity.

3.2.2 Semantics

In RTEC◦, the dependency graph of an event description may include cycles (see, e.g.,
Figure 3.1). Thus, we need to modify Definition 8 of FVP level to cater for dependency
graphs with cycles. The strongly connected components (SCCs) of a cyclic dependency
graph include either a single vertex, corresponding to an FVPwith no cyclic dependencies,
or a set of vertices of FVPs among which there are cyclic dependencies. A dependency
graph becomes acyclic by contracting its SCCs into single vertices.

Definition 9 (SCC Contracted Graph): Given a directed graph G =(V , E) and its SCCs
S1 , S2 , . . . , Sn , the SCC contracted graph G ′ =(V ′, E ′) of G is defined as follows:

1. V ′ =
∪

1≤i≤n{vSi}.
2. e =(vSi , vSj) ∈ E ′ iff ∃vi , vj ∈ V , such that vi ∈ Si , vj ∈ Sj , where Si ̸= Sj , and

e =(vi , vj) ∈ E . ■

By construction, G ′ is acyclic. To construct the SCC contracted graph of voting (resp. Net-
Bill), for example, we must merge the red nodes of the top (bottom) dependency graph
shown in Figure 3.1 into a single node.

Definition 10 (FVP Level in RTEC◦): Given a dependency graph G in RTEC◦ and the
SCC contracted graph G ′ of G , the level of a FVP F =V included in the SCC Si of G is
equal to the level of the vertex vSi of G ′, which is derived by following Definition 8. ■

According to Definition 10, all FVPs whose vertices are in the same cycle, and thus in the
same SCC of the dependency graph, have the same level.

Nomikos et al. [2005] have proposed the cycle-sum test, i.e., a procedure for deciding if a
normal logic program (without functions) where predicates have a time argument is locally
stratified. The temporal specifications that can be expressed as logic programs in RTEC◦
pass the cycle-sum test, and thus are locally stratified.

Proposition 2 (Semantics of RTEC◦): An event description in RTEC◦ is a locally stratified
logic program. ▲

Proof. See Appendix A.

Unlike RTEC, a local stratification of an event description in RTEC◦ cannot be derived
solely by partitioning the groundings of its predicates in terms of the level of the FVP they
concern. The ground predicates for FVPs with cyclic dependencies have to be stratified
further in terms of their time-stamp. At each FVP level (with cyclic dependencies), addi-
tional strata may be introduced for each time-point of the window.

P. Mantenoglou 64

Reasoning over Complex Temporal Specifications and Noisy Data Streams

3.2.3 Reasoning

Similar to RTEC, RTEC◦ computes and caches the maximal intervals of FVPs in a bottom-
up manner, following their level in the dependency graph, while the intervals of FVPs in
the same level may be computed and cached in any order. In contrast to RTEC, RTEC◦
supports cyclic dependencies, and employs Algorithms 1 and 2 to evaluate the holdsAt
predicates found in the bodies of initiatedAt and terminatedAt rules defining simple FVPs in
a cycle (RTEC◦ does not support cyclic dependencies with statically determined fluents).
Algorithms 1 and 2 are an efficient implementation of rules (3.7)–(3.9), i.e., they incor-
porate an incremental caching technique to avoid unnecessary re-computations, such as
those mentioned in Section 3.2.1.

To compute holdsAt(F =V , T), RTEC◦ first checks whether F =V has been processed
at the current query-time qi (see line 1 of Algorithm 1), i.e., whether the maximal intervals
for which F =V holds continuously have been computed. If they have been computed,
then RTEC◦ fetches them from the cache (line 2) and checks whether T belongs in these
intervals (line 3). If the intervals have not been computed yet, then RTEC◦ checks whether
some time-points, before or at T , for which F =V holds or not have already been cached
(see cachedLEQ in line 4). If that is the case (lines 4–11), then RTEC◦ retrieves the cached
time-point TlCP closer to T along with the truth value TvallCP of F =V at TlCP (line 5). If
TlCP coincides with T (line 6), then its truth value is returned; ‘+’ denotes that F =V
holds and ‘−’ that it does not. Otherwise, i.e., if TlCP does not coincide with T (lines 8–
11), RTEC◦ computes whether F =V holds at T restricting the evaluation in [TlCP , T);
the evaluation is performed by means of holdsAtEC, which is presented in Algorithm 2.
Moreover, the outcome of the evaluation is cached (lines 9 and 11). Finally, if no time-
points for F =V have been cached (lines 12–16), then RTEC◦ computes whether F =V
holds at T performing the evaluation in [qi−ω, T) (line 13) and caching the outcome.

Algorithm 2 presents the steps for evaluating holdsAtEC(F =V , TlCP , T , TvallCP), i.e.,
calculating whether F =V holds at T , restricting the search in [TlCP , T) and taking into
consideration TvallCP , i.e., the truth value of F =V at TlCP . All arguments of holdsAtEC
are ground. First, if F =V holds at TlCP (see lines 2–5 of Algorithm 2), then we check
whether F =V is broken at some time Tb ∈ [TlCP , T). brokenAt is a simple variation of
brokenBetween (see rules (3.8) and (3.9)) returning the time-point at which a FVP is broken.
If F =V is not broken in [TlCP , T), then RTEC◦ returns that F =V holds at T . Otherwise,
i.e., if F =V is broken at some Tb ∈ [TlCP , T), RTEC◦ calls recursively holdsAtEC, this
time restricting the evaluation interval to [Tb+1 , T), where Tb+1 denotes the next time-
point of Tb, and starting from the negative truth value of F =V at Tb. Second, if F =V
does not hold at TlCP (see lines 6–9), then RTEC◦ determines whether F =V is initiated
at some Ti ∈ [TlCP , T). If F =V is initiated in this interval, RTEC◦ calls holdsAtEC with
the evaluation interval [Ti+1 , T) and the initial truth value of F =V being positive. The
example below illustrates the incremental caching of RTEC◦.

Example 5 (Processing Cyclic Dependencies with RTEC◦): Consider the stream con-
sisting of events (3.10) and (3.12), while the initial value of status(m) in the current
window is proposed (see formula (3.11)). The computation of the initiation points of

65 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 1 holdsAt(F =V , T)

1: if processed(F =V) then
2: holdsFor(F =V , I)
3: if T ∈ I then return true
4: else if cachedLEQ(T , F =V) ̸= [] then
5: last(cachedLEQ(T , F =V), (TlCP , TvallCP))
6: if T ==TlCP then
7: if TvallCP ==+ then return true
8: else if holdsAtEC(F =V , TlCP , T , TvallCP) then
9: updateCache(F =V , T , +)
10: return true
11: else updateCache(F =V , T , −)
12: else
13: if holdsAtEC(F =V , qi−ω, T , −) then
14: updateCache(F =V , T , +)
15: return true
16: else updateCache(F =V , T , −)
17: return false

status(m)= proposed commences with the evaluation presented in Table 3.1, with some
additional calls, e.g., to processed (see Algorithm 1), to check for cached intervals and
time-points. Furthermore, RTEC◦ caches all computed time-points for which a FVP holds.
In this example, RTEC◦ caches the following:

holdsAt(status(m)= proposed , t1).
holdsAt(status(m)= voting , t2).
holdsAt(status(m)= voted , t3).
holdsAt(status(m)= null , t4).

(3.13)

The top part of Table 3.2 (lines 1–12) shows the remaining evaluation concerning the
initiation points of status(m)= proposed , and, in particular, the processing of the event
propose(agp ,m) at t5 . As in Table 3.1, we show a subset of the predicate calls to simplify
the presentation. To prove whether status(m)= null holds at t5 , as required by rule (3.3),
RTEC◦ follows Algorithm 1 and consults the cache, first by determining if the intervals of
this FVP have already been computed—at this stage they have not—and then by looking
for cached time-points. The closest cached time-point to t5 is t4 , while status(m)= null
holds at t4 (see cache (3.13)). Subsequently, RTEC◦ follows Algorithm 2 to prove whether
status(m)= null still holds at t5 . This is not the case, since status(m)= null is broken at
t4 (by the occurrence of a propose event at that time) and not re-initiated in the meantime.
Consequently, no new initiation points are computed for status(m)= proposed .

With the use of caching, RTEC◦ can restrict attention to the events that have not been pro-
cessed so far, avoiding unnecessary re-computations. In this example, without the cached
time-points of status we would have to repeat most of the steps presented in Example 4,
only to compute again the values of status before t5 .

P. Mantenoglou 66

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 2 holdsAtEC(F =V , TlCP , T , TvallCP)

1: if TlCP < T then
2: if TvallCP ==+ then
3: if brokenAt(F =V , TlCP , Tb , T) then
4: return holdsAtEC(F =V , Tb+1 , T , −)
5: else return true
6: else
7: if initiatedAt(F =V , TlCP , Ti , T) then
8: return holdsAtEC(F =V , Ti+1 , T , +)
9: else return false
10: else if TvallCP ==+ then return true
11: else return false

The middle part of Table 3.2 (lines 13–19) shows the computation of the initiation points
of status(m)= voting . At this stage, the intervals I for which status(m)= proposed holds
continuously have been computed and cached, and are (qi−ω, t1] and (t4 , ∞). In other
words, m is said to be ‘proposed’ from the beginning of the current window until t1 ,
and since t4 . As can be seen from Table 3.2, the computation of the initiation points
of status(m)= voting is very efficient. RTEC◦ quickly computes that status(m)= proposed
holds at t1 , as required by rule (3.4), since the intervals of this FVP may be fetched from
the cache. This way, the unnecessary re-computations discussed after Example 4 are
avoided.

The bottom part of Table 3.2 (lines 20–26) presents another illustration of the effects of in-
cremental caching, by showing the computation of the initiation points of status(m)= null .
Again, reasoning is very efficient: we fetch from the cache (3.13) time-point t3 for which
status(m)= voted holds, and directly prove rule (3.6) expressing the conditions in which
status(m)= null is initiated. ♢

3.2.4 Correctness and Complexity

We prove the correctness of RTEC◦ and present its complexity for processing an event
description with cyclic dependencies.

Proposition 3 (Correctness of RTEC◦): RTEC◦ computes all maximal intervals of the
FVPs of an event description with cyclic dependencies, and no other interval. ▲

Proof Sketch. First, we demonstrate that proving the correctness of maximal interval com-
putation for an FVP F =V that is in a cycle reduces to proving the correctness of com-
puting holdsAt(F =V ,T). Second, we prove that holdsAt(F =V ,T) is evaluated correctly
at every time-point T of the first window of the stream. To do this, we use an inductive
proof on T . Third, we generalise the proof for all subsequent windows. We use an in-
ductive proof on the sequence of the windows of the stream. As a result, we have proven
that holdsAt(F =V ,T), where F =V is part of a cycle, is evaluated correctly at every

67 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 3.2: Stream reasoning with RTEC. a1–a2 refer to Algorithms 1–2.

Predicate Rule/Alg.

1 initiatedAt(status(m)= proposed , qi−ω, T , qi) ? (3.3)
2 happensAt(propose(agp ,m), t5) ✓ (3.3), (3.12)
3 holdsAt(status(m)=null , t5) ? (3.3), a1
4 processed(status(m)=null) × a1
5 last(cachedLEQ(t5 , status(m)=null), (t4 ,+)) ✓ a1, (3.13)
6 holdsAtEC(status(m)=null , t4 , t5 , +) ? a1, a2
7 brokenAt(status(m)=null , t4 , t4 , t5) ✓ a2
8 holdsAtEC(status(m)=null , t4+1 , t5 , −) × a2
9 holdsAtEC(status(m)=null , t4 , t5 , +) × a2, a1
10 updateCache(status(m)=null , t5 , −) ✓ a1
11 holdsAt(status(m)=null , t5) × a1, (3.3)
12 initiatedAt(status(m)= proposed , qi−ω, T , qi) × (3.3)

13 initiatedAt(status(m)= voting , qi−ω, T , qi) ? (3.4)
14 happensAt(second(ags ,m), t1) ✓ (3.4), (3.10)
15 holdsAt(status(m)= proposed , t1) ? (3.4), a1
16 processed(status(m)= proposed) ✓ a1
17 holdsFor(status(m)= proposed , I), t1 ∈ I ✓ a1
18 holdsAt(status(m)= proposed , t1) ✓ a1, (3.4)
19 initiatedAt(status(m)= voting , qi−ω, t1 , qi) ✓ (3.4)

20 initiatedAt(status(m)=null , qi−ω, T , qi) ? (3.6)
21 happensAt(declare(agc ,m), t3) ✓ (3.6), (3.10)
22 holdsAt(status(m)= voted , t3) ? (3.6), a1
23 processed(status(m)= voted) × a1
24 last(cachedLEQ(t3 , status(m)= voted), (t3 ,+)) ✓ a1, (3.13)
25 holdsAt(status(m)= proposed , t3) ✓ a1, (3.6′)
26 initiatedAt(status(m)=null , qi−ω, t3 , qi) ✓ (3.6)

time-point of the stream. Moreover, based on the aforementioned reduction, it follows
that RTEC◦ computes all maximal intervals of the FVPs of an event description with cyclic
dependencies, and no other interval.

We provide a sketch for the second part of the proof. In order to prove the inductive step,
i.e., prove that holdsAt(F =V ,T) is evaluated correctly, provided that holdsAt(F ′ =V ′,T ′),
where T ′ < T and F ′ =V ′ is in some cycle that contains F =V , is evaluated correctly,
we follow three steps. First, we demonstrate that the cached tuple (TlCP ,TvallCP) used
by Algorithm 1 to prove holdsAt(F =V ,T) is correct, i.e., TvallCP =+ if F =V holds at
TlCP , and TvallCP =− if F =V does not hold at TlCP . Second, we prove that Algorithm
2, which is used by RTEC◦ to decide whether F =V holds at T given the cached tuple
(TlCP ,TvallCP), operates according to the law of inertia in the Event Calculus. Third, we
demonstrate that the initiations and terminations of F =V that are required by Algorithm
2 are evaluated correctly. The full proof is provided in Appendix B. □

We present the worst-case complexity of Algorithms 1 and 2, and compare it against
the complexity of reasoning with cycles in the absence of incremental caching. Accord-
ing to Algorithms 1 and 2, RTEC◦ consults its cache to evaluate holdsAt(F =V ,T), and
when reasoning is necessary, it is restricted to intervals that have not been explored so
far. Moreover, after the end of the evaluation of holdsAt(F =V ,T) the cache is updated.

P. Mantenoglou 68

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Therefore, in the worst-case, RTEC◦ will have to evaluate each initiatedAt/terminatedAt rule
for F =V at every time-point of the window, but no more than that.

Proposition 4 (Complexity of RTEC◦): The cost of evaluating the maximal intervals of
an FVP whose definition includes cyclic dependencies is O(ωk), where ω is the size of
the window and k is the cost of computing whether an FVP is initiated or terminated at a
given time-point (see [Artikis et al., 2015] for an estimation of k). ▲

Proof. See Appendix B.

In the absence of incremental caching, we do not mark the intervals that have been ex-
plored so far, and thus we may repeat evaluations that have already been performed. In
the worst case, given that we follow an increasing temporal order, the evaluation of all
earlier initiation and termination points of FVPs in a cycle has to repeated ω times. Thus,
the worst-case complexity is O(ω2 rk), where r is the number of FVPs in a cycle.

In real-world applications, ω, i.e., the window size, can be large. Therefore, the use of
the caching mechanism of RTEC◦ leads to significant performance gains (compare the
complexity expression presented in Proposition 4 against the cost of processing cyclic
dependencies without incremental caching that we outlined above). This optimised pro-
cessing with caching is the key difference of our proposed computational framework from
related work (see our empirical comparison of RTEC with jREC in Section 4.2.1).

3.2.5 Discussion

Several stream reasoning frameworks, such as RTEC, CORE and D2IA, do not support
temporal specifications with cyclic dependencies (see Table 2.3). Moreover, many Event
Calculus-based frameworks—e.g., s(CASP), Fusemate, jRECfi, and jRECrbt—are not de-
signed for processing cyclic dependencies, and thus do not feature efficient algorithms
for reasoning over such dependencies in a streaming setting. GKL-EC is built specifically
for the case of biological feedback loops, and cannot reason with the event descriptions
of other applications, such as maritime situational awareness and multi-agent systems.
Moreover, GKL-EC is not designed for reasoning over data streams.

Our complexity analysis showed the performance gains of RTEC◦. In Chapter 4, we com-
pare RTEC◦ with an implementation of jREC, demonstrating that RTEC◦ outperforms jREC
by about one order of magnitude when reasoning over cyclic dependencies. This re-
sult highlights the benefits of the caching mechanism of RTEC◦ compared to an Event
Calculus-based reasoner without a caching mechanism that is tailored specifically for
cyclic dependencies

Wan [2009] presented a framework for belief logic programming that eliminates cyclic
dependencies by introducing auxiliary rules and atoms representing intermediate results.
The number of these auxiliary clauses increases with the length of the cycle. On the
contrary, RTEC◦ handles cycles by utilising the Event Calculus, e.g., the formalisation of
the law of inertia, and does not require auxiliary clauses. Moura and Damásio [2015]

69 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

presented an approach for modular logic programming that supports positive cycles, i.e.,
cycles without negation. In contrast, RTEC◦ is not restricted to positive cycles. Moreover,
we presented reasoning algorithms for handling cycles in an efficient manner.

Aghasadeghi et al. [2024] proposed two incremental algorithms for monitoring the sat-
isfaction of (possibly cyclic) temporal patterns over time-evolving graphs using timed au-
tomata. In this context, cyclic patterns comprise sequences of events with time constraints
that are mapped onto edges of the graph that form a cycle. In contrast, RTEC◦ evaluates
FVPs whose definitions include cyclic dependencies, i.e., the satisfaction of the FVP at
time-point T depends on its truth value at some time-point(s) earlier than T . Moreover,
in [Aghasadeghi et al., 2024], the satisfaction of a temporal pattern does not lead to the
generation of a new event/situation, and thus hierarchies are not supported.

3.3 RTEC→: Reasoning over Streams of Events with Delayed Effects

We propose RTEC→, i.e., an extension of RTEC that supports events with delayed ef-
fects. We describe the novel language constructs of RTEC→, and subsequently study
its semantics. Afterwards, we present the reasoning algorithms for handling events with
delayed effects. We prove the correctness of the proposed algorithms and outline their
complexity.

3.3.1 Motivation

Temporal specifications often include events with delayed effects. In simulations of bio-
logical systems, a signal may dictate that the functions of a gene will be switched off at
a specified time after the signal took place [Srinivasan et al., 2022]. In multi-agent voting
protocols, the chair may be permitted to close the ballot of a motion only after a specified
time since the start of the voting procedure [Pitt et al., 2006]. In e-commerce, a contract
dictates a set of normative positions with deadlines for the corresponding parties [Hindriks
and Riemsdijk, 2013]. In the legal domain, a law may become applicable after a specified
time period has passed from its publication [Marı́n and Sartor, 1999]. In maritime situa-
tional awareness, the navigational status of a passenger ship is expected to change from
‘under way’ to ‘moored’ at most by a specified time after the ship started sailing [Montali
et al., 2013]. To capture such phenomena, we present RTEC→, an extension of RTEC
that supports events with delayed effects.

3.3.2 Representation

A key feature of RTEC→ is the support of events that may change the values of fluents in
the future.

Definition 11 (Event Description in RTEC→): An event description in RTEC→ extends
RTEC event descriptions with the following types of facts:

P. Mantenoglou 70

Reasoning over Complex Temporal Specifications and Noisy Data Streams

• fi(F =V ,F =V ′,R), where F =V and F =V ′ are FVPs with the same fluent,
V ̸=V ′, and R is a positive integer, expressing that the initiation of F =V at a time-
point T leads to the future initiation (fi) of F =V ′ at time-point T+R, provided that
F =V is not ‘broken’ between T and T+R. We call R the delay of the effects of the
event(s) initiating F =V . Moreover, if F =V is ‘broken’ between T and T+R, then
we say that the future initiation of F =V ′ is cancelled.

• p(F =V), expressing that the future initiation specified by fi(F =V ,F =V ′,R) may
be postponed. For instance, assuming an initiation of F =V at T , a re-initiation
of F =V at some time-point T ′, where T<T ′<T+R, moves the future initiation of
F =V ′ from T+R to T ′+R, provided that F =V is not ‘broken’ between T ′ and
T ′+R. ■

According to the above definition, in addition to immediate effects, events may have de-
layed effects. Consider a set of events EF =V that appear with positive happensAt pred-
icates in the body of an initiatedAt rule for F =V (rule (3.1)). An immediate effect of the
events in EF =V is the initiation of F =V , provided that all other conditions, if any, of the
initiatedAt rule are satisfied. Moreover, assuming that fi(F =V ,F =V ′,R), the events in
EF =V may have delayed effects, in the sense that F =V ′, where V ′ ̸=V , may be initiated
in the future.

Example 6 (Expiring Quotes): Consider NetBill, i.e., the e-commerce protocol we de-
scribed in Section 1.1.3. A quote may be defined with the following rules1:

initiatedAt(quote(M ,C ,G)= true,T)←
happensAt(present_quote(M ,C ,G ,P),T).

(3.14)

initiatedAt(quote(M ,C ,G)= false,T)←
happensAt(accept_quote(C ,M ,G),T).

(3.15)

In some cases, it may be required that quotes expire after a certain time—expired
quotes may not lead to a contract. Moreover, it may be useful to denote when
an active quote is close to expiring, in order to warn the consumer that the offer
will soon be unavailable. To address these requirements, we may augment rules
(3.14) and (3.15) with facts fi(quote(M ,C ,G)= true,quote(M ,C ,G)= expiring ,re) and
fi(quote(M ,C ,G)= expiring , quote(M ,C ,G)= false, rf). The former fi fact expresses that
present_quote(M ,C ,G ,P), i.e., the event that immediately initiates quote(M ,C ,G)= true
(see rule (3.14)), leads to a future initiation of quote(M ,C ,G)= expiring , after a delay
re , unless quote(M ,C ,G)= true is ‘broken’ in the meantime (an accept_quote(C ,M ,G)
event may ‘break’ quote(M ,C ,G)= true (see rule (3.15))). Based on the latter fi fact, an
initiation of quote(M ,C ,G)= expiring leads to a future initiation of quote(M ,C ,G)= false
after a delay rf , unless quote(M ,C ,G)= expiring is ‘broken’ in the meantime. In other
words, the occurrence of present_quote(M ,C ,G ,P) at T has the following effects, pro-
vided that no future initiation is cancelled: (a) quote(M ,C ,G)= true holds in (T ,T+re], (b)
quote(M ,C ,G)= expiring holds in (T+re ,T+re+rf], and (c) quote(M ,C ,G)= false holds
after T+re+rf . ♢

1We will omit the second and the fourth arguments of initiatedAt/terminatedAt predicates to simplify the
presentation.

71 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

A future initiation of F =V ′ at time-point T+R, based, e.g., on fi(F =V ,F =V ′,R), im-
plies that F =V is ‘broken’ at T+R. In RTEC→, it is also possible to express the future
termination of an FVP F =V without making any assertions about the future value of F ,
i.e., we become agnostic about the value of F in the future. This is a simpler case than
future initiations, and thus not discussed here.

An event description may contain an arbitrary set of fi(F =V ,F =V ′,R) facts. However,
it is not meaningful to state in the same event description both fi(F =V ,F =V ′,R) and
fi(F =V ,F =V ′′,R′), where V ̸=V ′ ̸=V ′′. Suppose, e.g., that F =V is initiated at time-
point T , R < R′ and F =V is not cancelled between T and T+R. Then, F =V ′ will be
initiated at T+R, and thus T+R will be a termination point of F =V . As a result, the future
initiation ofF =V ′′ atT+R′ will be cancelled. Therefore, in the case of fi(F =V ,F =V ′,R)
and fi(F =V ,F =V ′′,R′), only the future initiation with the shorter delay may take place.

In some cases, future initiations may be postponed.

Example 7 (Prolonged Quotes): In NetBill, we may allow for the possibility that a mer-
chant M extends the interval during which a consumer C may accept a quote, and
thus establish a contract between M and C . For instance, when quote(M ,C ,G)= true,
M may present another quote to consumer C , e.g., for a different price, with the
aim of postponing the expiration of quote(M ,C ,G). To cater for this possibility, we
may add p(quote(M ,C ,G)= true) in the event description. This way, a re-initiation of
quote(M ,C ,G)= true will postpone its future termination. ♢

Example 8 (Streams of Events with Delayed Effects): Figure 3.2 visualises streams
of events with delayed effects. In examples (a)(ii) and (b)(ii), we have a stream of three
events that lead to immediate initiations of an FVP F =V . Suppose that these events take
place at time-points T1 , T2 and T3 , where T3−T1<R. According to fi(F =V ,F =V ′,R),
there may be future initiations of F =V ′ at time-points T1+R, T2+R and T3+R. If
p(F =V) is not in the event description, i.e., the future initiations of F =V ′ may not be
postponed (see example (a)(ii)), then we have a future initiation of F =V ′ at T1+R, since
F =V is not ‘broken’ between T1 and T1+R. As a result of this future initiation of F =V ′,
F =V is ‘broken’ at T1+R, and thus all subsequent future initiations of F =V ′ are can-
celled. In contrast, if p(F =V) is in the event description, i.e., the future initiations of
F =V ′ may be postponed (example (b)(ii)), the re-initiation of F =V at T2 moves the fu-
ture initiation of F =V ′ from T1+R to T2+R, and the re-initiation of F =V at T3 moves
the future initiation of F =V ′ from T2+R to T3+R. Two further illustrations of streams of
events with delayed effects are presented in examples (a)(iii) and (b)(iii), and (a)(iv) and
(b)(iv). Examples (a)(i) and (b)(i), and (a)(v) and (b)(v), concern windowing and will be
discussed shortly. ♢

3.3.3 Semantics

fi facts introduce additional dependencies among FVPs. According to fi(F =V ,F =V ′,R),
a future initiation of F =V ′ depends on the initiation of F =V . We update the definition of

P. Mantenoglou 72

Reasoning over Complex Temporal Specifications and Noisy Data Streams

timeqi−ω qi

ω

(i) (ii) (iii) (iv) (v)

(a) future initiations may not be postponed.

timeqi−ω qi

ω

(i) (ii) (iii) (iv) (v)

(b) future initiations may be postponed.

Figure 3.2: Future initiations expressed by fi(F =V ,F =V ′,R) in a streaming setting. ω
and qi denote the window size and the i -th query time. The black points below ω represent
the events of the stream. The events in the top (resp. bottom) row lead to immediate
initiations (terminations) of F =V (e.g., rules (3.14) and (3.15)). Arrows facing upwards
(downwards) indicate initiations (terminations) of F =V . Red downward arrows express
future terminations of F =V , which are the result of future initiations of F =V ′, while
black downward arrows indicate immediate terminations of F =V . Faded, crossed-out
arrows denote cancelled future terminations of F =V , which are due to cancelled future
initiations of F =V ′. The dotted lines above the arrows express the delay R. Solid lines
between arrows express the maximal intervals of F =V . In (a)(v) and (b)(v), the displayed
intervals end at qi to indicate that they are open, i.e., F =V is not terminated within the
current window.

a dependency graph as follows.

Definition 12 (Dependency Graph in RTEC→): The dependency graph of an event de-
scription in RTEC→ is a directed graph G =(V , Ei ∪ Ef), where:

• V contains one vertex vF =V for each FVP F =V .
• Ei contains an ‘i-edge’ (vF =V , vF ′ =V ′) iff there is an initiatedAt/terminatedAt rule for
F ′ =V ′ having holdsAt(F =V ,T) as one of its conditions.

• Ef contains an ‘f-edge’ (vF =V , vF =V ′) iff there is an fi(F =V ,F =V ′,R) fact, and for
every fi(F =V ,F =V ′′,R′) fact, where V ′ ̸=V ′′, if any, it holds that R < R′. ■

In other words, the edges of RTEC dependency graphs without future initiations (see
Definition 7), i.e., the edges expressing immediate initiations/terminations, are now
called ‘i-edges’, in order to distinguish them from the edges expressing future initia-
tions/terminations, i.e., ‘f-edges’.

73 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

quote = true

quote = expiring

quote = false

f

f

permission = false

permission = true

f f

contract = true

contract = false

f

suspended = true

suspended = false

f

i

i

i

i

i

(a) Dependency graph G.

Wq

Wp

Wc

Ws

(b) f-contracted
dependency graph

G fcd .

Sq

Sp

Scs

(c) Contracted
dependency graph

Gcd .

Figure 3.3: (a) The dependency graph G , (b) the f-contracted dependency graph G fcd

and (c) the contracted dependency graph Gcd of NetBill. For simplicity, we omitted the
arguments of fluents, while a vertex vj is displayed as j . In diagram (a), the blue dot-
ted rectangles denote the weakly connected components of the i-reduced dependency
graph G ird of G . The brown dotted-dashed rectangles denote the cd-components of G .
In diagram (b), the blue dashed rectangles denote the strongly connected components of
G fcd . The vertices of Wq , Wp, Wc and Ws are the result of contracting the weakly con-
nected components of G ird , concerning resp. the FVPs of quote, permission, contract and
suspended . In diagram (c), the vertices of Sq , Sp and Scs are produced by contracting the
strongly connected components of G fcd , concerning Wq , Wp, and Wc and Ws .

Example 9 (Dependency Graph with Future Initiations): Figure 3.3(a) presents a frag-
ment of the dependency graph of an event description for NetBill. i-edges denote FVP
dependencies based on initiatedAt/terminatedAt rules. The i-edges pointing to the ver-
tex of contract(M ,C ,G)= true, e.g., express that contract(M ,C ,G)= true may be ini-
tiated, i.e., a contract between a merchant M and a consumer C about goods G
may come into effect, when quote(M ,C ,G)= true or quote(M ,C ,G)= expiring , i.e., the
quote is still active. (Recall that events, e.g., accept_quote(C ,M ,G) that may initiate
contract(M ,C ,G), are not included in dependency graphs.) f-edges model FVP depen-
dencies based on fi facts. The f-edge (vquote(M ,C ,G)= true, vquote(M ,C ,G)= expiring), e.g., is due
to fi(quote(M ,C ,G)= true, quote(M ,C ,G)= expiring , re) (Example 6). ♢

A dependency graph in RTEC→ may include an f-edge (vF =V , vF =V ′), according to which,
following Definition 8, F =V ′ has a higher level than F =V . However, F =V and F =V ′

depend on each other, i.e., the initiations of F =V ′ terminate F =V , and vice versa.
Therefore, F =V and F =V ′ should remain in the same level. Moreover, a dependency
graph in RTEC→ may include cycles (see, e.g., Figure 3.3(a)). To address these issues,
we have to extend the definition of ‘FVP level’ (Definition 8), which is necessary for strati-
fying RTEC→ programs, and guides the reasoning algorithms. In what follows, we present

P. Mantenoglou 74

Reasoning over Complex Temporal Specifications and Noisy Data Streams

the steps that lead to the new definition of FVP level. Subsequently, we present the se-
mantics of RTEC→, and in the following section, we present the reasoning algorithms.

In order to define the level of FVPs in an RTEC→ event description, we first transform its
dependency graph G into the f-contracted dependency graph G fcd , where the vertices
connected by f-edges have been contracted into a single vertex. To do this, we construct
the i-reduced dependency graph G ird of G , which is generated by removing all i-edges
from G , and contract the vertices that are connected in G ird .

Definition 13 (f-Contracted Dependency Graph): Given a dependency graph
G =(V , Ei ∪ Ef) of an event description in RTEC→, the i-reduced dependency graph
G ird =(V , Ef) of G , and the weakly connected components (WCC)s W1 ,W2 , . . . ,Wn of
G ird , the f-contracted dependency graph G fcd =(V fcd , E fcd) of G is defined as follows:

• V fcd =
∪

1≤j≤n{vWj }.
• (vWj , vWk

) ∈ E fcd iff ∃vj , vk ∈ V , such that vj ∈Wj , vk ∈Wk and (vj , vk) ∈ Ei . ■
Example 10 (f-Contracted Dependency Graph): Figure 3.3(b) presents the f-contracted
dependency graph of NetBill. The i-reduced dependency graph is the same as the graph
of Figure 3.3(a) without the i-edges. The vertices of FVPs of quote and contract , e.g.,
constitute WCCs of the i-reduced dependency graph, denoted by Wq and Wc, and thus
have been contracted into vertices vWq and vWc , respectively. Moreover, there is an edge
(vWq , vWc) in the f-contracted dependency graph because the dependency graph includes
i-edges from the vertices of quote to a vertex of contract . ♢

An f-contracted dependency graph may include cycles (see, e.g., Figure 3.3(b)). To define
the FVP level in the presence of cycles, we contract G fcd based on its strongly connected
components (SCC)s, generating the contracted dependency graph Gcd of G .

Definition 14 (Contracted Dependency Graph): Given the f-contracted dependency
graph G fcd =(V fcd , E fcd) of a dependency graph G in RTEC→, and the SCCs S1 , S2 , . . . , Sn

of G fcd , the contracted dependency graph Gcd =(Vcd , Ecd) of G is defined as follows:

1. Vcd =
∪

1≤j≤n{vSj }.
2. (vSj , vSk

) ∈ Ecd iff ∃vj , vk ∈ V fcd , such that vj ∈ Sj , vk ∈ Sk , where Sj ̸= Sk , and
(vj , vk) ∈ E fcd . ■

By construction, Gcd is acyclic.

Example 11 (Contracted Dependency Graph): Figure 3.3(c) presents the contracted
dependency graph of NetBill. Vertices vWc and vWs of the f-contracted dependency graph
constitute a SCC, and thus have been contracted into a single vertex vScs , in order to
produce the contracted dependency graph. The edges (vSq , vScs) and (vSp , vScs) in the
contracted dependency graph are due to the edges (vWq , vWc) and (vWp , vWs) in the f-
contracted graph. ♢

We say that the vertices of FVPs that are mapped onto the same vertex in Gcd comprise
a cd-component of G . We call the union of the cd-components of G its cd-partition.

75 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Definition 15 (cd-partition and cd-component): Consider a dependency graph G in
RTEC→, the i-reduced dependency graph G ird of G , and the f-contracted dependency
graph G fcd of G , where S1 , . . . , Sn are the SCCs of G fcd . G =GS1 ∪ . . . ∪GSn is the cd-
partition of G iff, for each F =V such that vF =V ∈ GSi , vF =V is included in a WCC W of
G ird such that vW is included in SCC Si of G fcd . We call GSi a cd-component of G . ■

According to Definition 15, there is a one-to-one mapping between the cd-components of
G and the vertices of Gcd .

Example 12 (cd-components): Figure 3.3(a) displays the cd-components of the depen-
dency graph of NetBill. We have three cd-components GSq , GSp and GScs , containing,
respectively, the vertices of quote, the vertices of permission, and the vertices of contract
and suspended . ♢
Definition 16 (FVP Level in RTEC→): Given a dependency graph G in RTEC→, its cd-
components GS1 , . . . ,GSn and the contracted dependency graph Gcd of G , the level of an
FVP F =V , such that vF =V ∈ GSi , is defined as the level of the vertex vSi in Gcd . ■
Example 13 (FVP Level with Future Initiations): In the contracted dependency graph
of NetBill (Figure 3.3(c)), the vertices vSq and vSp have level 1, while vSsc has level 2.
Therefore, the FVPs of quote and permission have level 1, and the FVPs of contract and
suspended have level 2. ♢

The semantics of RTEC→ remains a locally stratified logic program. The definition of
FVP level allows us to arrange the initiatedAt/terminatedAt predicates of FVPs into strata in
ascending FVP level order. For FVPs of the same cd-component, and thus the same level,
a stratification may be constructed by introducing an additional stratum for each time-point
T of the window, in ascending temporal order.

Proposition 5 (Semantics of RTEC→): An event description in RTEC→ is a locally strat-
ified logic program. ▲

Proof. See Appendix A.

3.3.4 Reasoning

One way to handle events with delayed effects would be to employ the following rules:

initiatedAt(F =V ′,T+R)←
fi(F =V ,F =V ′,R),
initiatedAt(F =V ,T),
not cancelled(F =V ,T ,T+R).

(3.16)

cancelled(F =V ,T ,T+R)←
brokenBetween(F =V ,T ,T+R).

(3.17)

P. Mantenoglou 76

Reasoning over Complex Temporal Specifications and Noisy Data Streams

cancelled(F =V ,T ,T+R)←
p(F =V),
initiatedBetween(F =V ,T ,T+R).

(3.18)

According to rule (3.16), F =V ′ will be initiated at T+R if an initiation of F =V leads to an
initiation of F =V ′ with delayR, indicated by fi(F =V ,F =V ′,R), F =V is indeed initiated
atT , and the future initiation is not ‘cancelled’ betweenT andT+R. Rule (3.17) expresses
that the future initiation of F =V ′ will be cancelled if F =V is ‘broken’ between T and
T+R, i.e., F =V is terminated or F =V ′′, whereV ′′ ̸=V , is initiated. Rule (3.18) concerns
future initiations that may be postponed, as indicated by p(F =V), and expresses that the
future initiation of F =V ′ will be cancelled if F =V is initiated between T and T+R. In
other words, the future initiation of F =V ′ may be postponed by re-initiating F =V .

Unfortunately, rules (3.16)–(3.18) are not suitable for reasoning over data streams. The
evaluation of these rules may lead to the computation of initiation points that have already
been computed. See, e.g., Figure 3.2(a)(ii), where we have three initiations of F =V at
time-points T1 , T2 and T3 , and a future initiation of F =V ′ at T1+R. When computing
the effects of the initiations of F =V at T2 and T3 , we would have to prove twice more
the future initiation of F =V ′ at T1+R, only to cancel the future initiations of F =V ′ at
T2+R and T3+R. Furthermore, rules (3.16)–(3.18) are not designed to operate in the
presence of windowing, which is quintessential for streaming applications. See, e.g., Fig-
ure 3.2(a)(i), where the events initiating F =V take place before the start of the current
window, while the future initiations are said to take place after the start of the window.

For these reasons, rules (3.16)–(3.18) are not part of RTEC→. To address the afore-
mentioned issues, we have developed a caching algorithm that avoids unnecessary re-
computations when reasoning over events with delayed effects, and an algorithm identify-
ing the minimal information that needs to be transferred between sliding windows in order
to guarantee correctness. These algorithms are presented in Section 3.3.4. Below, in
Section 3.3.4, we present a compile-time process computing the optimal FVP processing
order in the presence of an arbitrary set of fi relations.

Off-line Reasoning

Based on Definition 16, RTEC→ can process the FVPs of an event description in a bottom-
up fashion, according to their level, caching the FVP intervals derived at each level. This
way, when processing an FVP F =V of level m, the intervals of the FVPs of levels lower
than m that participate in the definition of F =V , if any, may be retrieved from the cache
without the need for re-computation. This processing order, however, is not applicable to
FVPs of the same level, e.g., FVPs with fi relations.

Example 14 (Processing Quotes): Consider the top-left cd-component GSq of the de-
pendency graph of NetBill (Figure 3.3(a)). Suppose that quote(M ,C ,G)= true is ini-
tiated at time-points T1 and T2 , and that future initiations are not cancelled. Based
on the fi facts (see Example 6), quote(M ,C ,G)= expiring is initiated at T1+re and

77 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

T2+re , and quote(M ,C ,G)= false is initiated at T1+re+rf and T2+re+rf . Process-
ing quote(M ,C ,G)= false first leads to redundant computations. In order to compute
the future initiations of quote(M ,C ,G)= false that fall within the window (qi−ω, qi], we
need to evaluate whether quote(M ,C ,G)= expiring is initiated at each time-point in
(qi−ω, qi−rf]. In turn, in order to compute the future initiations of quote(M ,C ,G)= expiring
in (qi−ω, qi−rf], we need to evaluate the initiations of quote(M ,C ,G)= true at each time-
point in (qi−ω, qi−rf−re].

We can avoid redundant computations at time-points where we may not have future
initiations by processing the FVPs of GSq in an order induced by the f-edges of GSq .
This way, we first compute the initiation points T1 and T2 of quote(M ,C ,G)= true by
evaluating initiatedAt(quote(M ,C ,G)= true,T) at each time-point of the window. Next,
given the initiation points T1 and T2 of quote(M ,C ,G)= true, we can compute the initia-
tions of quote(M ,C ,G)= expiring at T1+re and T2+re , without considering the remain-
ing time-points of the window. Similarly, given the initiation points T1+re and T2+re
of quote(M ,C ,G)= expiring , we can compute the initiations of quote(M ,C ,G)= false at
T1+re+rf and T2+re+rf , without any redundant evaluations. ♢

In order to avoid unnecessary computations, RTEC→ evaluates and caches the initiations
of the FVPs in a cd-component in an order induced by the f-edges.

Definition 17 (FVP Order Relation): Consider the dependency graph G of an event de-
scription in RTEC→ and the cd-components GS1 , . . . ,GSn of G . For a cd-component GSi ,
we define the FVP order relation ≺GSi

on the FVPs whose vertices are in GSi as follows:

• If GSi is acyclic, then F =V ≺GSi
F ′ =V ′ iff there is a path in GSi that starts from

vF =V and ends at vF ′ =V ′ .
• If GSi contains a cycle, then relation ≺GSi

is empty. ■

In the cd-component GSq of NetBill, we have quote = true ≺GSq
quote = expiring ≺GSq

quote = false.

The FVP order relation ≺GSi
is a strict partial order, meaning that some FVPs may not be

comparable with ≺GSi
, even in an acyclic cd-component.

Example 15 (Partial FVP Order Relation): Consider an event description with
fi(F =V1 ,F =V3 ,R1) and fi(F =V2 ,F =V3 ,R2). The dependency graph has a cd-
component GSi , containing the vertices of F =V1 , F =V2 and F =V3 . Based on f-edges
(vF =V1 , vF =V3) and (vF =V2 , vF =V3), we have F =V1 ≺GSi

F =V3 and F =V2 ≺GSi

F =V3 . However, there is no directed path connecting vertices vF =V1 and vF =V2 , and
thus F =V1 and F =V2 are not ordered with relation ≺GSi

. ♢

Based on ≺GSi
, we define a total processing order of FVPs as follows:

Definition 18 (Processing Order of FVPs): Given the FVP order relation ≺GSi
of a cd-

componentGSi of a dependency graph in RTEC→, a processing order of FVPs is any strict
total order ≺∗

GSi
that is a linear extension of ≺GSi

. ■
Example 16 (Processing order of FVPs): For the event description of Example 15, ≺∗

GSi

P. Mantenoglou 78

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 3 processCDComponent
Input: cd-component GSi , cached intervals I .
Output: I , including the intervals of the FVPs in GSi .

1: if GSi does not contain a cycle then
2: for each vF =V in GSi do IP [F =V]← []

3: for each vF =V in processingOrder(GSi) do
4: IP [F =V].add(RTEC.evalIP(F =V , I))
5: TP [F =V]←RTEC.evalTP(F =V , I)
6: if fi(F =V ,F =V ′,R) then
7: FtIP [F =V ′]←evalFI(IP [F =V],TP [F =V],V ′,R)
8: TP [F =V].add(FtIP [F =V ′])
9: IP [F =V ′].add(FtIP [F =V ′])

10: I [F =V]←RTEC.mi(IP [F =V],TP [F =V])

11: else if GSi does not contain an f-edge then
12: I .updateIntervals(RTEC◦(GSi , I))
13: else I .updateIntervals(cyclicFI(GSi , I))

14: return I

is consistent with≺GSi
, i.e., F =V1 ≺∗

GSi
F =V3 and F =V2 ≺∗

GSi
F =V3 . Moreover, since

F =V1 and F =V2 are not comparable with ≺GSi
, ≺∗

GSi
extends ≺GSi

with F =V1 ≺∗
GSi

F =V2 or F =V2 ≺∗
GSi

F =V1 . ♢

The processing order of FVPs is derived at compile-time, in a process transparent to the
event description developer. During run-time operations, RTEC→ utilises this processing
order to guide reasoning over FVPs of the same level.

Run-Time Reasoning

RTEC→ processes the cd-components of a dependency graph level-by-level, and, for each
cd-component GSi , RTEC→ computes and caches the future initiations and the maximal
intervals of the FVPs whose vertices are in GSi , by following processing order ≺∗

GSi
. For

the dependency graph of NetBill (Figure 3.3(a)), e.g., RTEC→ processes GSq or GSp first,
and GScs last, because the FVPs in GSq and GSp have level 1, and the FVPs in GScs have
level 2. Moreover, for cd-componentGSq , RTEC→ follows≺∗

GSq
, computing and caching the

future initiations and the intervals of the FVPs in the following order: quote(M ,C ,G)= true,
quote(M ,C ,G)= expiring , and, finally, quote(M ,C ,G)= false. This way, RTEC→ does not
perform any redundant computation.

RTEC→ also identifies the attempts of initiating an FVP at some future time-point that need
to be transferred between sliding windows, in order to guarantee correctness. Below, we
present the key reasoning algorithms of RTEC→.

Algorithm 3 presents the steps for deriving the maximal intervals of the FVPs in a cd-

79 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 4 evalFI
Input: IP [F =V],TP [F =V],V ′,R.
Global: qi , ω.
Output: The future initiations of F =V ′.

1: FtIP [F =V ′]← []
2: Tatt ← findAttempt(F =V ,R)
3: if Tatt ̸=null and not cancelled(qi−ω,Tatt , IP [F =V],TP [F =V]) then
4: FtIP [F =V ′].add(Tatt)

5: for each T in IP [F =V] do
6: if T+R ≤ qi and not cancelled(T ,T+R, IP [F =V],TP [F =V]∪FtIP [F =V ′]) then
7: FtIP [F =V ′].add(T+R)

8: computeAttempts(F =V ,R)
9: return FtIP [F =V ′]

component GSi . I contains the intervals of FVPs in previously processed cd-components.
We start with the case where there is no cycle in GSi (lines 1–10). RTEC→ processes the
FVPs in GSi following processing order ≺∗

GSi
(line 3), and, for each FVP F =V , RTEC→

employs RTEC (see Section 2.3) to evaluate the initiatedAt and terminatedAt rules of F =V
(lines 4–5). The derived initiation points of F =V are added in list IP [F =V], while list
TP [F =V] contains the derived termination points. Next, based on fi(F =V ,F =V ′,R),
RTEC→ evaluates the future initiations of F =V ′, as they constitute terminations of F =V
(line 7). The details of this process will be presented shortly. RTEC→ stores the time-
points of these future initiations in the auxiliary list FtIP [F =V ′], and adds the items
of FtIP [F =V ′] to TP [F =V]. Moreover, RTEC→ adds the items of FtIP [F =V ′] to
IP [F =V ′]; this way, the future initiations of F =V ′ will be available to RTEC→ when
processing F =V ′. At this point, lists IP [F =V] and TP [F =V] contain all initiation and
termination points of F =V , and no other time-points (see Section 3.3.5 for the correct-
ness proof). RTEC→ is then able to construct the maximal intervals of F =V (see RTEC.mi
in line 10), by pairing initiation and termination points (see Section 2.3).

A cd-component GSi may contain cycles (see, e.g., GSp and GScs in Figure 3.3(a)). If
GSi contains cycles without f-edges, then RTEC→ employs RTEC◦ (see Section 3.2) to
compute the intervals of FVPs in GSi (see line 12 of Algorithm 3). For cycles with at least
one f-edge (line 13), RTEC→ employs an extended version of the algorithms of RTEC◦,
handling future initiations in the presence of cycles (see Algorithm 13 in Appendix B).

In the following, we describe the steps of RTEC→ for computing the future initiations of
F =V ′, that lead to terminations of F =V . Due to windowing, it is possible for an initiation
of F =V to take place at a time-point T of the current window, while the corresponding
future initiation of F =V ′ at T+R falls outside the window. In such cases, RTEC→ gener-
ates and caches an attempt event att that may mark a future initiation F =V ′ at T+R. At
each query time, RTEC→ evaluates the future initiations of F =V ′ based on the cached
attempt events, and the events that fall within the window. Algorithm 4 presents the rea-
soning process. First, RTEC→ processes the attempt events cached at the previous query

P. Mantenoglou 80

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 5 findAttempt
Input: F =V ,R
Global: qi , ω,Attempts [F =V], Iqi−1 [F =V]
Output: Tatt

1: Tatt ← null
2: if qi−ω+1 in Iqi−1 [F =V] then
3: if p(F =V) then
4: for each T in Attempts [F =V] do
5: if T > qi−ω and T−R ≤ qi−ω then Tatt ← T
6: else if T−R > qi−ω then return Tatt

7: else
8: [Ts ,Tf)← getIntervalContainingTimepoint(Iqi−1 [F =V], qi−ω+1)
9: for each Tatt in Attempts [F =V] do
10: if Tatt > qi−ω and Tatt−R == Ts then return Tatt

11: return Tatt

time, in order to determine which one of them, if any, may mark a future initiation of F =V ′

at the current query time (line 2 of Algorithm 4, and Algorithm 5). Second, RTEC→ com-
putes the future initiations of F =V ′, based on the selected attempt event, if any, and
the events that took place inside the window (lines 3–7 of Algorithm 4). Third, RTEC→

computes and caches attempt events that may mark future initiations of F =V ′ at a future
query time (line 8 of Algorithm 4, and Algorithm 6). In what follows, we present each of
these three steps.

Processing attempt events from the previous query time. RTEC→ decides which one of
the attempt events that were computed and cached at the previous query time qi−1 , if any,
may mark a future initiation of F =V ′ at qi . First, we make sure that the future initiation
of F =V ′ was not cancelled before the current window by checking whether F =V holds
at the start of the window. This is done by verifying that the list of intervals computed for
F =V at the previous query time qi−1 contains the start of the window (line 2 of Algorithm
5). If it holds, then we keep an attempt event such that the corresponding initiation of
F =V takes place before qi−ω. If p(F =V) is in the event description, then we keep the
most recent such event (lines 3–6). Otherwise, we choose the earliest one (lines 7–10).
Note that it is not possible to determine at qi−1 which attempt event will be used at qi ,
because we make no assumptions about the size of the window at qi .

Example 17 (Processing attempt events from the previous query time): Consider Fig-
ures 3.2(a)(i) and (b)(i). For each initiation of F =V atT , that took place before the current
window, with T+R falling within the window, we have a cached attempt event at T+R.
These events are displayed by red and faded arrows. The red arrow denotes the attempt
event att that is kept, while the faded arrows denote the attempt events that are discarded.
In (a)(i), future initiations of F =V ′ may not be postponed, and thus att takes place R time-
points after the first initiation of F =V . In (b)(i), att takes place R time-points after the last
initiation of F =V , since future initiations of F =V ′ may be postponed. ♢

81 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Computing future initiations. After determining which cached attempt event att , if any,
may mark a future initiation of F =V ′, RTEC→ computes the future initiations of F =V ′

that fall within the current window. First, RTEC→ evaluates whether att marks a future
initiation of F =V ′ by checking whether the future initiation of F =V ′ is cancelled between
the start of the window and the time-stamp Tatt of att (see lines 3–4 of Algorithm 4).
Second, for each initiation of F =V at T , RTEC→ computes a future initiation of F =V ′

at T+R, provided that T+R falls inside the window and the future initiation of F =V ′

is not cancelled between T and T+R (lines 5–7). IP [F =V], like all lists in RTEC→, is
temporally sorted; thus, RTEC→ examines the initiations of F =V in ascending temporal
order. Lines 5–7 are an efficient implementation of rules (3.16)–(3.18). In order to identify
an initiation of F =V that may lead to a future initiation of F =V ′, RTEC→ examines the list
of cached initiation points of F =V , without requiring any rule computations (contrast line
5 of Algorithm 4 with the second condition of rule (3.16)). Moreover, in order to evaluate
whether a future initiation of F =V ′ is cancelled between T and T+R, RTEC→ checks if
there is a cached initiation or termination of F =V between T and T+R that cancels the
future initiation of F =V ′. Instead, rules (3.17)–(3.18) evaluate initiations and terminations
of F =V that may have been previously computed.

Example 18 (Future initiations within window): Consider example (a)(ii) of Figure 3.2.
RTEC→ computes and caches the initiations of F =V at T1 , T2 and T3 . RTEC→ then
determines whether we have future initiations of F =V ′ at T1+R, T2+R and T3+R (see
lines 5–7 of Algorithm 4). RTEC→ starts with the initiation point of F =V at T1 , and com-
putes a future initiation of F =V ′ at T1+R, because, according to the cached points, the
future initiation of F =V ′ is not cancelled between T1 and T1+R. As a result, T1+R is
cached in list FtIP [F =V ′]. Next, RTEC→ determines that the future initiations of F =V ′

at T2+R and T3+R are cancelled, by retrieving T1+R from FtIP [F =V ′].

In example (a)(iii), F =V is initiated twice, at time-points T1 and T2 , and terminated once,
at T3 . For the initiation of F =V at T1 (resp. T2), RTEC→ determines that the future
initiation of F =V ′ at T1+R (T2+R) is cancelled by verifying that the cached termination
point T3 of F =V is between T1 (T2) and T1+R (T2+R) (see lines 5–7 of Algorithm 4).
Example (a)(iv) is similar to (a)(iii), with the exception that the termination point of F =V
takes place between the first and the last future initiation of F =V ′. In this case, RTEC→

detects that only the first future initiation of F =V ′ takes place, as in (a)(ii). In examples
(b)(ii)–(iv), the future initiations of F =V ′ may be postponed by a re-initiation of F =V . In
(b)(ii), e.g., RTEC→ determines that the future initiations of F =V ′ at T1+R and T2+R are
cancelled, because they are postponed by the cached initiation T3 of F =V (lines 5–7 of
Algorithm 4). Thus, we have a future initiation of F =V ′ at T3+R. ♢

Computing attempt events for the next query time. In the last step at qi , RTEC→ derives
the attempt events that may lead to future initiations of F =V ′ at the next query time qi+1 .
Recall that an attempt event takes place R time-points after the initiation of F =V . More-
over, we make no assumptions about the size of the window at qi+1 . If future initiations of
F =V ′ may be postponed, then every attempt event may mark an initiation of F =V ′ at
qi+1 , and is therefore cached (lines 2–4 of Algorithm 6). Otherwise, if future initiations of
F =V ′ may not be postponed, then we cache only the attempt events that take place R

P. Mantenoglou 82

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 6 computeAttempts
Input: F =V ,R
Global: I [F =V], IP [F =V]
Output: Attempts [F =V]

1: Attempts [F =V]← []
2: if p(F =V) then
3: for each T in IP [F =V] do
4: Attempts [F =V].add(T+R)

5: else
6: for each [Ts ,Tf) in I [F =V] do
7: Attempts [F =V].add(Ts+R)

8: cache(Attempts [F =V])

time-points after the starting point of a maximal interval of F =V (lines 5–7).

Example 19 (Computing attempt events for the next query time): Consider examples
(a)(v) and (b)(v) of Figure 3.2. In the case of (a)(v), only the attempt event indicated by
the red arrow will be cached, while in (b)(v) the attempt events denoted by the red arrow
and the faded ones will be cached. If we assume non-overlapping windows in the case of
(b)(v), i.e., the next window starting at qi , then the attempt events of the faded arrows will
be discarded at qi+1 . However, if the next window starts between two initiations denoted
by upward arrows, we will discard all attempt events corresponding to initiations that fall
within the next window, because these initiations may be invalidated in the presence of
the events that arrive in (qi , qi+1] and have a time-stamp in (qi+1−ω, qi]. ♢

3.3.5 Correctness and Complexity

RTEC→ guarantees correct FVP interval computation provided that the window size is
sufficient to tolerate the lags, if any, in the arrival of events. In other words, for each
event E with time-stamp T , there is a query time qi , such that E has arrived by qi and
T ∈ (qi−ω, qi].

Proposition 6 (Correctness of RTEC→): RTEC→ computes all maximal intervals of the
FVPs of an event description, and no other interval. ▲

Proof Sketch. We present a sketch of the proof, focusing on acyclic dependency graphs.
The complete proof, including cyclic graphs, may be found in Appendix B. Assume an
event description with fi(F =V ,F =V ′,R). The proof consists of three steps. First, we
prove that RTEC→ transfers the attempt events between windows that are required for
correct FVP interval computation, and no other attempt event. Second, we show that
RTEC→ computes all future initiations of F =V ′, and no other future initiation. Third, at
the time of computing the maximal intervals of an FVP, the cache contains all necessary
initiations and terminations of the FVP, and no other initiation/termination.

83 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

We present the proof of the second step. At the start of future initiation computation, the
cache contains all initiations and immediate terminations of F =V , and no other initiation
or immediate termination of F =V . Suppose that T1 , . . . ,Tk are the temporally sorted
initiations of F =V . We show that RTEC→ computes a future initiation of F =V ′ at Ti+R,
where 1 ≤ i ≤ k , iff the future initiation of F =V ′ is not cancelled between Ti and Ti+R.
For the base case, according to lines 5–7 of Algorithm 4, RTEC→ computes a future ini-
tiation of F =V ′ at T1+R iff there is no cancellation point between T1 and T1+R. Note
that there are no initiations of F =V before T1 , and thus no future initiations of F =V ′

before T1+R. In other words, the cache has all cancellation points of the future initiation
of F =V ′ between T1 and T1+R. Next, assume that RTEC→ has evaluated correctly the
future initiations of F =V ′ up to Tn−1+R, where 1 < n ≤ k . Since RTEC→ caches the
future initiations that it derives (line 7 of Algorithm 4), the cache contains all cancellation
points of the future initiations of F =V ′ up to Tn−1+R. As a result, RTEC→ computes a
future initiation of F =V ′ at Tn+R iff there is no cancellation point between Tn and Tn+R.

The above proof may be generalised to a cd-component with an arbitrary set of
f-edges. There are two cases. First, we may have a ‘chain’ of n f-edges
(vF =V1 ,vF =V2), (vF =V2 ,vF =V3), . . . , (vF =Vn ,vF =Vn+1). Second, we may have a vertex
vF =Vm with n incoming f-edges (vF =V1 , vF =Vm), . . . , (vF =Vn , vF =Vm) (see Example 15).
More composite cd-components may be built by combining these two structures. In
both cases, at the time of evaluating the future initiation of an FVP, the cache con-
tains all the cancellation points that are necessary for correct computation. In the for-
mer case, based on Definition 18, RTEC→ processes the FVPs in the following or-
der: F =V1 ,F =V2 , . . . ,F =Vn+1 . As a result, when processing F =Vk , where 1 <
k ≤ n+1 , the cache of RTEC→ contains all initiations and immediate terminations of
F =Vk−1 . At this point, the future initiations of F =Vk+j , where 1 ≤ j ≤ n−k+1 , are
not required, because they do not terminate F =Vk−1 , and thus do not cancel the fu-
ture initiations of F =Vk . In general, a future initiation of F =Vk+j , based on f-edge
(vF =Vk+j−1

, vF =Vk+j
), terminates F =Vk+j−1 , and no other FVP. In the latter case, RTEC→

processes FVPs F =V1 , . . . ,F =Vn before F =Vm . As a result, when processing F =Vm ,
the cache of RTEC→ contains all the initiations and immediate terminations of FVPs
F =V1 , . . . ,F =Vn . Therefore, in both cases, the cache of RTEC→ contains the nec-
essary information for correct future initiation computation. □

Recall that RTEC→ processes the cd-components of a dependency graph level-by-level.
The proposition below presents the complexity of processing a cd-component.

Proposition 7 (Complexity of RTEC→): The cost of evaluating the future initiations of the
FVPs in a cd-component is O(nv(ω−R)log(ω)), where nv is the number of possible values
of the FVPs, ω is the window size and R is the delay of a future initiation. ▲

Proof. See Appendix B.

Proposition 7 presents the cost of RTEC→ in the worst-case, where we have an initia-
tion/termination of an FVP at each time-point of the window. In practice, the number k of

P. Mantenoglou 84

Reasoning over Complex Temporal Specifications and Noisy Data Streams

initiations and terminations of an FVP is much smaller than the window size ω, and thus
the cost of RTEC→, i.e., O(nvklog(k)), is significantly smaller. Note that the benefits of
our approach, as compared to frameworks that lack the caching techniques of RTEC→,
are considerable. The cost, e.g., of reasoning with rules (3.16)–(3.18) is exponential in
ω−R. We illustrate the benefits of RTEC→ compared to frameworks without caching in
our empirical analysis (see Chapter 4).

3.3.6 Discussion

Table 2.3 outlined several stream reasoning frameworks, most of which do not support
events with delayed effects. GKL-EC and s(CASP) may express events with delayed
effects using the trajectory predicate. trajectory is restricted to non-inertial fluents and does
not capture future effects that may be postponed [Miller and Shanahan, 2002]. In the case
of jRECfi, the algorithms used for handling events with delayed effects do not utilise an
optimised processing order for FVPs, and do not feature caching, leading to reasoning
inefficiencies. We present an empirical comparison of RTEC→ against GKL-EC, s(CASP)
and jRECfi on event descriptions with events with delayed effects in Chapter 4.

RTEC→ is motivated by the work of Miller and Shanahan [2002], where a first-order logic
Event Calculus dialect was extended to support events with delayed effects. Several other
formalisms support such events, including the action language presented in [Karlsson et
al., 1998], an Event Calculus-based formalism [Marı́n and Sartor, 1999], and multi-agent
system specification languages expressing normative positions with deadlines [Hindriks
and Riemsdijk, 2013; Demolombe, 2014; Chopra et al., 2020]. There are several dif-
ferences between RTEC→ and these approaches. Delayed effects that may be post-
poned, e.g., are not supported in [Karlsson et al., 1998; Marı́n and Sartor, 1999; Miller
and Shanahan, 2002; Demolombe, 2014; Chopra et al., 2020], while the formalisms pre-
sented in [Marı́n and Sartor, 1999; Miller and Shanahan, 2002; Hindriks and Riemsdijk,
2013; Demolombe, 2014; Chopra et al., 2020] do not support delayed effects that may
lead to further delayed effects (see Example 6). Moreover, none the aforementioned ap-
proaches features reasoning techniques capable of handling streaming applications.

3.4 RTECA: Reasoning over Specifications with Allen Relations

We present RTECA, i.e., an extension of RTEC that supports event descriptions containing
the relations of Allen’s Interval Algebra. We describe the language constructs of RTECA
and outline its semantics. Moreover, we provide reasoning algorithms that handle tempo-
ral patterns with Allen relations, demonstrate the correctness of our proposed algorithms
and outline their complexity.

85 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 3.3: Output modes of the allen construct.

outMode Output list I

source I =Srel
target I = Trel
union union_all([Srel, Trel], I)

intersect intersect_all([Srel, Trel], I)
complement relative_complement_all(Srel, [Trel], I)

complement_inv relative_complement_all(Trel, [Srel], I)

3.4.1 Motivation

Allen’s relations have proven necessary for expressing the temporal specifications of con-
temporary applications [Körber et al., 2021; Awad et al., 2022]. However, as mentioned
in Section 2.3, the interval manipulation constructs of RTEC cannot express the relations
of Allen’s algebra. Consider, e.g., the computation of the interval pairs (i s , i t), where
i s ∈ S and i t ∈ T , satisfying before. intersect_all([S, T], []) states that for every interval
pair (i s , i t), such that i s ∈ S, i t ∈ T , it holds that i s ∩ i t = ∅. Therefore, i s is before i t , or
vice versa. It is impossible, however, to distinguish between the two cases. To address
this issue, we present an extension of RTEC that supports temporal specifications with
Allen relations.

3.4.2 Representation

We cannot express Allen relations in RTEC without extending its expressive power. Sim-
ple fluent definitions evaluate fluent initiation and termination conditions on a particular
time instant, and thus do not support interval endpoint comparisons. Moreover, as already
mentioned, the interval manipulation constructs in statically determined fluent definitions
cannot express Allen relations. To address this issue, we extend the statically determined
fluent definitions.

Definition 19 (Syntax of statically determined fluent definitions in RTECA): A
holdsFor(F =V , I) rule defining a statically determined fluent F may additionally contain
body predicates in the form of allen(rel,S, T , outMode, I), where rel denotes an Allen rela-
tion, S and T are input lists of maximal intervals, outMode expresses how we should treat
the interval pairs (i s , i t) satisfying rel, where i s ∈ S and i t ∈ T , and I is the output list of
maximal intervals. ■

According to allen(rel,S, T , outMode, I), I contains the maximal intervals produced by ap-
plying outMode to the interval pairs of the ‘source list’ S and the ‘target list’ T satisfying rel,
i.e., one of the Allen relations presented in Table 2.2. The inverse relations may be com-
puted by reversing the order of the input lists. outMode is applied to the intervals of lists
Srel ={i s | i s ∈ S ∧ ∃i t ∈ T : rel(i s , i t)} and Trel ={i t | i t ∈ T ∧ ∃i s ∈ S : rel(i s , i t)}, i.e., the

P. Mantenoglou 86

Reasoning over Complex Temporal Specifications and Noisy Data Streams

S
T

Idia

(a) disappearedInArea

Time

is1 is2

it1 it2

idia1

Ig1

Ig2

S
T

Isrv

(b) suspiciousRendezVous

Time

ig11

ig21

is1 is2

it1 it2

isrv1

Figure 3.4: Maximal interval computation with the allen construct.

intervals of the source and the target lists appearing in at least one pair of intervals sat-
isfying rel. The possible values of outMode and their meaning are presented in Table 3.3.
Below, we illustrate the use of the allen predicate in fluent definitions for maritime situa-
tional awareness (see Section 1.1.3 for a description of this application).

Example 20 (Allen relations for maritime situational awareness): Vessels often at-
tempt to conceal illegal activities in certain areas, such as fishing in fisheries restricted
areas, by stopping transmitting their position. See the rule below:

holdsFor(disappearedInArea(Vl ,AreaType)= true, Idia)←
holdsFor(withinArea(Vl ,AreaType)= true,S),
holdsFor(gap(Vl)= farFromPorts , T),
allen(meets,S, T , target, Idia).

(3.19)

disappearedInArea(Vl ,AreaType) is a statically determined Boolean fluent defined in terms
of withinArea(Vl ,AreaType), i.e., a simple fluent expressing that vessel Vl is in an area
of type AreaType, and gap(Vl), i.e., a multi-valued fluent expressing the intervals during
which vessel Vl stopped transmitting its position. The specification of gap is available
with the complete event description of maritime situational awareness. The last condition
of rule (3.19) expresses the meets Allen relation. allen(meets,S, T , target, Idia) states that
from the interval pairs (i s , i t) satisfying meets, where i s ∈ S and i t ∈ T , we will keep
in the output list Idia the target intervals i t (see the second line of Table 3.3). According
to rule (3.19), therefore, a vessel Vl is said to disappear in an area of AreaType during
an interval idia , if idia is an interval during which gap(Vl)= farFromPorts , i.e., Vl stopped
transmitting its position while being in the open sea, and idia is met by an interval i s during
which Vl was within an area of AreaType. Figure 3.4(a) provides a graphical illustration.
In this illustration, the only interval pair satisfying meets is (i s1 , i

t
2), and thus Idia =[i t2]. If

we wanted to include i s1 in the output Idia , then we would have replaced target by union
in the last condition of rule (3.19) (see the third line of Table 3.3). This way, i s1 would be
amalgamated with i t2 producing a single interval, i.e., Idia =[i s1 ∪ i t2]. In any case, the in-
terval manipulation constructs of RTEC cannot express disappearedInArea. For instance,

87 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

relative_complement_all(T , [S], I) would discard the common time-point of i s1 and i t2 , and
would include i t1 , which does not satisfy meets. Similarly, union_all([S, T], Idia) would in-
clude all intervals of S and T , which is incorrect.

Proximate vessels may stop transmitting their position to conduct illegal activities, such
as an illegal cargo transfer. Consider the formalisation below:

holdsFor(suspiciousRendezVous(Vl1 ,Vl2)= true, Isrv)←
holdsFor(gap(Vl1)= farFromPorts , Ig1),
holdsFor(gap(Vl2)= farFromPorts , Ig2),
holdsFor(proximity(Vl1 ,Vl2)= true, T),
union_all([Ig1 , Ig2],S), allen(during,S, T , target, Isrv).

(3.20)

suspiciousRendezVous(Vl1 ,Vl2) is a statically determined fluent, and proximity(Vl1 ,Vl2) is
a Boolean fluent denoting whether two vessels, Vl1 and Vl2 , are close to each other. T ,
i.e., the list of maximal intervals during which two vessels are close to each other, is derived
by an online spatial processing technique on vessel positional signals, which is robust to
interim signal gaps [Santipantakis et al., 2018]. union_all in rule (3.20) derives S, i.e., the
list of maximal intervals during which gap(Vl1)= farFromPorts or gap(Vl2)= farFromPorts .
Then, allen(during,S, T , target, Isrv) identifies the maximal intervals of T that contain an
interval of S and stores them in list Isrv . Therefore, rule (3.20) specifies that vessels Vl1
and Vl2 may be conducting an illegal activity during an interval i srv , if i srv is an interval
during which Vl1 and Vl2 are close to each other, and i srv contains an interval i s during
which at least one of the vessels stops transmitting its position. Figure 3.4(b) displays an
illustration of rule (3.20). union_all constructs list S as the union of the intervals in lists
Ig1 and Ig2 . Among the intervals of S and T , during is only satisfied for the interval pair
(i s2 , i

t
1), resulting in Isrv =[i t1]. Note that Isrv cannot be derived by the interval manipulation

constructs of RTEC. union_all([S, T], I), e.g., would compute list I =[i s1 , i
t
1 , i

t
2], including

intervals i s1 and i t2 that do not satisfy during. ♢

As mentioned earlier, Table 3.3 lists the possible values of outMode and their mean-
ing. Consider the computation of allen(meets,S, T , outMode, Idia) in the example of Figure
3.4(a), where the only interval pair satisfying meets is (i s1 , i

t
2). If outMode was complement

or complement_inv, we would apply the relative_complement_all construct on i s1 and i t2
(complement_inv reverses the order of operants in relative_complement_all) and compute,
respectively, list Idia as [i s1 \ i t2] or [i t2 \ i s1]. Note that some combinations of rel and outMode
are equivalent. For instance, if an interval pair (i s , i t) satisfies during, then i s is a sub-
interval of i t . Therefore, allen(during,S, T , union, I) and allen(during,S, T , target, I) produce
the same output list.

3.4.3 Semantics

An event description in RTECA defines a dependency graph (see Definition 7). According
to Definition 7, the addition of allen constructs in statically determined fluents definitions
does not introduce additional dependencies among FVPs. Therefore, our extension of
RTEC does not affect its semantics.

P. Mantenoglou 88

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 7 allen(rel,S, T , outMode, I)
1: Sc, T c ← retrieveCachedIntervals()
2: S ← append(Sc,S), T ← append(T c, T)
3: pairs ← compute_allen_relation(S, T , rel)
4: Srel, Trel ← getSourceTargetIntervals(pairs)
5: I ← applyOutMode(Srel, Trel, outMode)
6: windowing(S, T , rel)

Algorithm 8 compute_allen_relation(S, T , rel)
1: ps ← 1 , pt ← 1 , pairs ← []
2: while ps ≤ length(S) and pt ≤ length(T) do
3: i s ← S[ps], i t ← T [pt]
4: if rel= before then
5: if before(i s , i t) then
6: pairs .add((i s , [i t , . . . , T [length(T)]]))
7: else if f (i s) ≤ f (i t) then
8: pairs .add((i s , [T [pt+1], . . . , T [length(T)]]))
9: else if rel(i s , i t) then pairs .add((i s , [i t]))

10: if f (i s) ≤ f (i t) or (s(i s) ≤ f (i t) and rel ∈ {starts, finishes, during, equal}) then
11: ps ← ps + 1

12: if f (i s) ≥ f (i t) or (f (i s)≥s(i t) and rel ∈ {before,meets, starts, overlaps, equal}) then
13: pt ← pt + 1

14: return pairs

Proposition 8 (Semantics of RTECA): An event description in RTECA is a locally stratified
logic program. ▲

Proof. See Appendix A.

3.4.4 Reasoning

We extend the process of statically determined fluent evaluation of RTEC with algo-
rithms computing Allen relations. Algorithm 7 presents the steps of the evaluation of
allen(rel,S, T , outMode, I). This algorithm derives all interval pairs (i s , i t), such that i s ∈ S
and i t ∈ T , satisfying Allen relation rel, and stores them in list pairs (line 3). We then
compute lists Srel and Trel containing, respectively, the source and the target intervals ap-
pearing in list pairs at least once (line 4). This way, we may apply outMode to lists Srel and
Trel, as specified in Table 3.3, in order to compute the output list I (line 5). In what fol-
lows, we present the algorithm computing the interval pairs of S and T satisfying an Allen
relation, and the bookkeeping operations which are necessary for correct Allen relation
computation in a streaming setting (see lines 1, 2 and 6 of Algorithm 7).

89 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Allen Relation Computation. Algorithm 8 computes the interval pairs of S and T satisfy-
ing an Allen relation rel and stores them in list pairs. I in holdsFor(F =V , I) is a sorted list
of maximal intervals (even if the items of the stream are not sorted) [Artikis et al., 2015].
Therefore, S and T are also sorted lists of maximal intervals (see Definition 19). We eval-
uate rel by means of interval endpoint comparisons, following the corresponding definition
in Table 2.2. An element of pairs is a tuple of the form (i s , T ′), denoting that the source
interval i s satisfies rel with every interval in the list of target intervals T ′ ⊆ T . Using this
compact representation, we avoid enumerating all computed interval pairs, without infor-
mation loss. For example, the tuple (i s1 , [i

t
1 , i

t
2]) for a relation rel denotes that rel(i s1 , i t1) and

rel(i s1 , i t2) hold.

Algorithm 8 uses two pointers, ps and pt , to traverse S and T . If rel is before and, indeed,
before(i s , i t) holds, we add the tuple (i s , [i t , . . . , T [length(T)]]) to pairs, where T [length(T)]
denotes the last interval of T (line 6). If before(i s , i t) does not hold and f (i s) ≤ f (i t), i.e.,
the source interval does not end after the target interval, then i s is before all target intervals
after i t . Consequently, we add the tuple (i s , [T [pt+1], . . . , T [length(T)]]) to pairs (line 8).
If rel is not before and rel(i s , i t) holds, we simply add (i s , i t) to pairs (line 9).

Afterwards, Algorithm 8 increments pointer ps and/or pointer pt . ps (resp. pt) may be
incremented only if the current source (target) interval i s (i t) cannot satisfy rel with any
subsequent target (source) interval. Since S and T are sorted lists of maximal intervals,
we can check this based on the relative positions of i s and i t , and the given relation rel,
without iterating over any subsequent interval of S and T . The conditions in which pointers
ps and pt may be incremented, while guaranteeing the correct computation of interval pairs
satisfying rel, are presented in lines 10 and 12.

Example 21 (Allen relation computation): In the example of Figure 3.4(a),
allen(meets,S, T , target, Idia) is used to compute the maximal intervals of disappearedInArea
in list Idia . In order to derive these intervals, RTECA computes all interval pairs in lists S
and T satisfying meets (see line 3 of Algorithm 7). This is achieved with Algorithm 8. In
this example, the source list is S =[i s1 , i

s
2], the target list is T =[i t1 , i

t
2]. Initially, ps points

to i s1 and pt points to i t1 . Algorithm 8 verifies that meets does not hold for the interval
pair (i s1 , i t1) in line 9. Next, we check whether pointer ps needs to be incremented. Since
f (i s1) > f (i t1), the condition in line 10 fails, and thus we do not increment ps . In contrast,
the condition in line 12 succeeds because f (i s1) > f (i t1). Therefore, we increment pt
(line 13). The interval pair of the next iteration is (i s1 , i

t
2). meets(i s1 , i t2) is satisfied and

thus we compute the pair (i s1 , [i t2]). i s1 and i t2 cannot satisfy meets with any future interval;
consequently, we increment both ps and pt . There is no target interval after i t2 . Thus,
Algorithm 8 terminates and returns (i s1 , [i

t
2]). ♢

Windowing. In order to handle streaming data, stream reasoning systems often employ
windowing techniques. Recall that, at each query time qj , RTEC reasons over the items
of an input stream that fall within a specified sliding window wj =(qj−ω, qj], where ω is
the size of the window, while all elements of the stream that took place before or at qj−ω
are discarded/‘forgotten’. In the common case that the elements of a stream arrive with
delays, e.g., due to network delays, it is preferable to make ω longer than the step. This

P. Mantenoglou 90

Reasoning over Complex Temporal Specifications and Noisy Data Streams

q81 q82

S
T

Idia

w81

w82

(a) Query time: q81

is,q811

it,q811 it,q812

idia,q811

s(w82) q81 q82

S
T

Idia

w81

w82

(b) Query time: q82

is,q822

it,q822

idia,q821

s(w82)

Figure 3.5: Online maximal interval computation.

way, we may reason, at qj , over the stream elements that took place in (qj−ω, qj−1], but
arrived after qj−1 . As an example, Figure 3.5 shows the intervals of S and T of Figure
3.4(a) as they are available at query times q81 and q82 . The corresponding windows w81

and w82 are overlapping in order to accommodate, at query time q82 , stream elements that
took place in (q82−ω, q81], but arrived after q81 .

RTECA follows RTEC and reasons over streams using sliding windows. We make the
following assumptions. First, the window size and the step remain constant. Thus, we
can always derive the endpoints of the next window based on the current query time.
Second, the delays in the stream may be tolerated by the window size. In other words, at
query time qj , the intervals taking place before the current window wj are not revised. In
contrast, the intervals that were available or derived at qj−1 and take place within wj may
be revised at qj . RTECA guarantees correct reasoning by computing, at qj , all interval
pairs (i s , i t) satisfying Allen relation rel, such that at least one of i s and i t intersects with
window wj . The proof of correctness is presented in the following section. To compute all
such interval pairs, we cache at each query time the intervals that may be required in the
future (line 6 of Algorithm 7). This way, we may retrieve at qj the intervals cached at qj−1

(see lines 1–2) that allow us to perform correct Allen relation computation. In the following
example, we motivate our caching technique.

Example 22 (Windowing): Figure 3.5(a) illustrates the computation of
allen(meets,S, T , target, Idia) at query time q81 , where S and T contain only the in-
tervals that fall within window w81 . Contrast these intervals with the ones depicted in
Figure 3.4(a). Interval i t ,q811 , e.g., is shorter than the interval i t1 of Figure 3.4(a) because
a segment of i t1 falls outside w81 . Moreover, the events leading to the extension of i t ,q812

up to q81 have been delayed and are not available at q81 , and thus i t ,q812 ends earlier than
q81 . Based on the intervals in w81 , we compute that meets(i s,q811 , i t ,q812) holds at q81 and
derive the output interval idia,q811 , which matches i t ,q812 .

The intervals of S and T available at the next query time, q82 , i.e., i s,q822 and i t ,q822 , are
displayed in Figure 3.5(b). The first segment of i t ,q812 , i.e., [s(i t ,q812), s(w82)] is missing,
because it is outside the current window, while its final segment (s(w82), f (i

t ,q81
2)] has been

91 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 9 windowing(S, T , rel)
1: s(wj+1)= qj+step − ω
2: S< ← getIntervalsBeforeTimepoint(S, s(wj+1))
3: i s∗ ← getIntervalContainingTimepoint(S, s(wj+1))
4: i t∗ ← getIntervalContainingTimepoint(T , s(wj+1))
5: if i s∗ ̸= null then
6: if rel ∈ {meets, overlaps, before} or (i t∗ ̸= null and

((rel ∈ {starts, equal} and s(i s∗)= s(i t∗)) or
(rel ∈ {finishes, during} and s(i s∗) > s(i t∗)))) then

7: cache([s(i s∗), s(wj+1)])

8: if i t∗ ̸= null then
9: if rel ∈ {meets, starts, overlaps} and ∃i s ∈ S< : rel(i s , i t∗) then
10: cache([s(i t∗), s(wj+1)]), cache(i s)
11: else if rel ∈ {before} and ∃i s ∈ S< : (before(i s , i t∗)

and f (i s) ≥ s(wj+1)−mem) then
12: cache([s(i t∗), s(wj+1)])
13: else if rel ∈ {finishes, during} or (i s∗ ̸= null and

((rel ∈ {starts, equal} and s(i s∗)= s(i t∗)) or
(rel ∈ {overlaps} and s(i s∗) < s(i t∗)))) then

14: cache([s(i t∗), s(wj+1)])

15: if rel ∈ {during} then
16: for i s ∈ S< : rel(i s , i t∗) do cache(i s)

17: if rel ∈ {before} then
18: for i s∈ S< : f (i s) ≥ s(wj+1)−mem do cache(i s)

extended, given the events that arrived after q81 . Considering the intervals i s1 and i t2 of
Figure 3.4(a), it is not possible to compute meets(i s1 , i t2) at q82 because i s1 and part of i t2
take place before w82 . To address this issue, we cache, at q81 , i s,q811 and the segment of
i t ,q812 that is before time-point s(w82). Figure 3.5(b) depicts these cached (segments of)
intervals with dotted lines. At q82 , i s,q811 , which matches i s1 , is added to S and the cached
segment of i t ,q812 is amalgamated with i t ,q822 , forming an interval that matches i t2 . As a
result, we compute that meets(i s1 , i t2) holds and the output interval idia,q821 at q82 . In Figure
3.5(b), the dashed segment of idia,q821 denotes the interval part that falls outside w82 . In
contrast to idia,q811 , idia,q821 matches idia1 , i.e., the output interval displayed in Figure 3.4(a).
♢

Example 22 demonstrates that the prefix of a target interval intersecting with the next
window, and a source interval ending before the next window, may need to be cached
to guarantee correct reasoning. Target intervals ending before the next window are not
cached because they cannot satisfy any Allen relation with a source interval ending in the
future. Algorithm 9 presents our caching procedure. First, we compute the start endpoint
of the next window s(wj+1) (line 1), and identify the list of source intervals S< taking place
before s(wj+1), as well as the source and target intervals i s∗ and i t∗ , if any, containing

P. Mantenoglou 92

Reasoning over Complex Temporal Specifications and Noisy Data Streams

s(wj+1) (lines 2–4). For example, in Figure 3.5(a), S< =[i s,q811], i s∗ = null and i t∗ = i t ,q812 . The
segments of i s∗ and i t∗ that are before s(wj+1)may need to be cached (see i t ,q812 in Example
22). The conditions for caching [s(i s∗), s(wj+1)] and [s(i t∗), s(wj+1)] are in lines 5–7 and 8–
14, respectively. Moreover, we may need to cache a subset of the intervals in S<. The
conditions for caching such intervals are presented in lines 8–10 and 15–18.

In the case of before, it is impossible to guarantee correct reasoning without caching every
source interval. For example, interval i s,q811 of Figure 3.5(a) will satisfy before with all target
intervals after i t ,q812 that arrive in the future. Thus, we need to always keep i s,q811 in memory
to ensure correctness. In order to maintain a balance between efficiency and correctness
in the case of before, we use a memory threshold mem and cache, at query time qj , all
source intervals ending in [s(wj+1)−mem, s(wj+1)] (see lines 17–18 of Algorithm 9). If at
least one of these intervals is before i t∗ , i.e., the target interval containing s(wj+1), then
we also cache [s(i t∗), s(wj+1)] (see lines 11–12). This way, we may compute, at qj+1 , the
interval pairs (i s , i t) satisfying before, such that i t intersects with window wj+1 and i s ends
in [s(wj+1)−mem, s(wj+1)].

3.4.5 Correctness and Complexity

We prove the correctness of RTECA and present its complexity, with respect to Allen re-
lation computation for stream reasoning.

Proposition 9 (Correctness of RTECA): RTECA computes all maximal intervals of a stat-
ically determined fluent defined in terms of an Allen relation, and no other interval. ▲

As expected, RTECA is correct provided that interval delays, if any, can be tolerated by
the window size. In other words, all intervals occurring before query time qj that were not
available at qj , take place after s(wk), where k > j , and will be available by query time
qk . For the case of before, we additionally permit delayed source intervals taking place in
[s(wk)−mem, s(wk)] and arriving by qk .

To prove the correctness of RTECA, we first show that Algorithm 8 computes all interval
pairs (i s , i t), where i s ∈ S and i t ∈ T , satisfying an Allen relation, and no other interval
pair. Then, we show that Algorithm 9 caches all intervals that may be required by Algorithm
8 in the future for correct Allen relation computation, and no other interval.

Lemma 1: Algorithm 8 computes all interval pairs (i s , i t), where i s ∈ S and i t ∈ T , satis-
fying an Allen relation, and no other interval pair. ▲
Proof Sketch. We present the proof for meets; the proofs for the remaining relations are
similar and may be found in Appendix B. Algorithm 8 is sound because, according to line
9, it may only compute an interval pair (i s , i t), such that i s ∈ S and i t ∈ T , if meets(i s , i t)
holds. Towards proving completeness, suppose that meets(i s , i t) holds and Algorithm 8
does not compute (i s , i t). In this case, according to line 9, there is no iteration of the while
loop of Algorithm 8 such that pointer ps points to i s and pt points to i t . The condition of line
2 states that Algorithm 8 iterates over all items in at least one of its input lists. Suppose
that, in the current iteration, ps points to i s when pt points to an interval i tb that is before i t .

93 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

By the definition of meets, we have f (i s)= s(i t), while it holds that s(i t) > f (i tb), because
T is a sorted list of maximal intervals. Therefore, it holds that f (i s) > f (i tb), and thus we
only increment pointer pt (see lines 10–13). This condition continues to hold for all target
intevals until pt points to i t . Similarly, assume that pt points to i t when ps points to an
interval i sb that is before i s . s(i t)= f (i s) > f (i sb) holds, and thus Algorithm 8 increments ps
until it points to i s . In both cases, we reach an iteration of the while loop where ps points to
i s and pt points to i t , which is a contradiction. Thus, if meets(i s , i t) holds, then Algorithm
8 computes (i s , i t). □

Lemma 2: Algorithm 9 caches all intervals that may satisfy an Allen relation with an interval
arriving in the future, and no other interval. ▲

Proof Sketch. Suppose that there is a source interval i s∗ containing the start of the next
window s(wj+1). We will prove that Algorithm 9 caches [s(i s∗), s(wj+1)] iff i s∗ may satisfy
an Allen relation with a target interval i t arriving in the future. meets/overlaps/before: if
i t occurs in the next window wj+1 , it holds that s(i t) > s(i s∗), and thus i s∗ may satisfy
meets, overlaps or before with i t . Therefore, Algorithm 9 caches [s(i s∗), s(wj+1)] (line 6).
starts/equal: starts(i s∗ , i t) and equal(i s∗ , i t) may hold only if s(i s∗)= s(i t) and f (i s∗) ≤ f (i t), in
which case i t also contains s(wj+1). Thus, we cache [s(i s∗), s(wj+1)] iff there is a target
interval starting at s(i s∗) and containing s(wj+1) (see the conditions for starts and equal in
line 6). finishes/during: finishes(i s∗ , i t) and during(i s∗ , i t) may hold only if s(i s∗) > s(i t) and
f (i s∗) ≤ f (i t). Therefore, we cache [s(i s∗), s(wj+1)] iff there is a target interval starting be-
fore s(i s∗) and containing s(wj+1) (see the conditions for finishes and during in line 6). The
proofs for caching a target interval containing s(wj+1) and source intervals ending before
s(wj+1) are provided in Appendix B.

Proposition 10 (Complexity of RTECA): The cost of computing the maximal intervals of
a statically determined fluent defined in terms of an Allen relation is O(n), where n is the
number of input intervals. ▲

Proof. See Appendix B.

We identified the conditions according to which a source (resp. target) interval cannot
satisfy an Allen relation with any future target (source) interval. Algorithm 8 leverages
these conditions (lines 10 and 12) in order to compute all interval pairs satisfying an Allen
relation in a single pass over the input intervals. Moreover, we specified the conditions
that allow us to detect in linear time the intervals that need to be cached (see lines 5–18
of Algorithm 9). In practice, the number of cached intervals is negligible. Thus the cost
of computing Allen relations remains constant as the stream progresses, and is bound by
the size of the window.

3.4.6 Discussion

We have identified stream reasoning frameworks that support Allen relations (see Table
2.3). These systems have some shortcomings compared to our proposed framework. In

P. Mantenoglou 94

Reasoning over Complex Temporal Specifications and Noisy Data Streams

D2IA and ETALIS, Allen relation satisfaction generates the union of the intervals satisfying
the relation. Thus, these systems do not support other output interval construction modes
(see, e.g., the output modes in Table 3.3). ETALIS and ISEQ do not take advantage
of the common assumption that the intervals of situations of interest are maximal. As
a result, Allen relation computation requires more complicated reasoning algorithms that
yield higher reasoning times compared to our approach. TPStream evaluates an Allen
relation by performing a binary search over the sorted list of target intervals for each source
interval. Thus, the cost of Allen relation computation in TPStream is O(nlogn), where n is
the number of input intervals, which is higher than the complexity of our framework (see
Proposition 10).

The literature contains several plane-sweeping-based algorithms that compute Allen rela-
tions. For example, Piatov et al. [2021] developed a family of interval join algorithms, in-
cluding Allen relations. These algorithms have log-linear time complexity, and thus higher
cost than RTECA. Chekol et al. [2019] extended SPARQL with plane-sweeping-based al-
gorithms for Allen relation computation. Contrary to RTECA, this work does not support
streaming data. The aforementioned approaches do not operate on maximal intervals.
In this context, Allen relation computation becomes a harder task that leads to higher
worst-case reasoning times compared to the case of having maximal intervals. Moreover,
plane-sweeping-based approaches iterate over every endpoint of the intervals in the input
lists, whereas, in RTECA, we have identified the conditions under which we may increment
both pointers in the same iteration (see Algorithm 8), while preserving result completeness
(see Lemma 1).

Havelund et al. [2021] proposed an extension of Allen’s algebra featuring quantification
over intervals. This work focuses on relations before, during and overlaps, omitting the re-
maining relations. Unlike RTECA, this approach does not support the construction of inter-
vals by means of (arbitrary conditions on) concurrent events. nfer [Kauffman et al., 2018]
is a rule-based system transforming instantaneous event streams into interval-based, hi-
erarchical abstractions, possibly using Allen relations. nfer does not include optimisations
for Allen relation computation and does not guarantee correct reasoning in a streaming
setting.

TPStream and the system of Chawda et al. [2014] support distributed Allen relation com-
putation. Pilourdault et al. [2016] compute approximate incarnations of Allen relations.
RTECA does not support approximate Allen relation and lacks distribution techniques; ex-
tensions of RTECA with these features are considered as future work directions.

95 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 96

Reasoning over Complex Temporal Specifications and Noisy Data Streams

4. EXPERIMENTAL EVALUATION OF RTEC◦, RTEC→ AND RTECA

We present an empirical evaluation of RTEC◦, RTEC→ and RTECA. In Section 4.1, we de-
scribe the applications and the computational frameworks that we employed in our exper-
imental evaluation. Section 4.2 presents our experiments, while Section 4.3 summarises
our results.

4.1 Experimental Setup

We evaluated RTEC◦, RTEC→ and RTECA on (fragments of) event descriptions from sev-
eral applications that require stream reasoning. Our evaluation included empirical com-
parisons of the reasoning efficiency of RTEC◦, RTEC→ and RTECA against related event
processing frameworks. Below, we briefly describe the applications and the datasets we
employed. Afterwards, we list the frameworks that we included in our empirical evaluation.

4.1.1 Applications

Our evaluation involves the applications that we outlined in Section 1.1.3, as well as city
transport management, which we describe below. We briefly discuss the event descrip-
tions and the datasets we employed for these applications.

Maritime Situational Awareness. In this application, the input events concern simple
maritime activities, which are generated based on AIS position signals emitted by ves-
sels. Spatio-temporal combinations of these simple activities form composite patterns,
signifying various types of dangerous, suspicious and illegal vessel activities, such as
ship-to-ship transfer of goods in the open sea, that must be detected in real-time. For
some of our experiments, we extended the event description for the maritime domain pro-
posed by Pitsikalis et al. [2019] with cyclic dependencies among FVPs, in order to capture
more accurately the maritime behaviours of interest, such as fishing. Moreover, in some
of our experiments, we introduced composite maritime activities defined in terms of Allen
relations (see, e.g., rule (3.19)). We employed a publicly available dataset1 of 18M AIS
position signals, emitted from 5K vessels sailing in the Atlantic Ocean around the port
of Brest, France, between October 2015–March 2016. Moreover, we employed a much
larger dataset, made available to us by IMIS Global2, containing 55M position signals
from 34K vessels sailing in the European seas between January 1-30, 2016. A descrip-
tion of both datasets may be found in [Pitsikalis et al., 2019]. The task was to compute
the maximal intervals of FVPs expressing composite maritime activities, such as trawling
and ship-to-ship transfer.

Human Activity Recognition. We detected instances of composite human activities by
1https://zenodo.org/record/1167595
2https://imisglobal.com/

97 P. Mantenoglou

https://zenodo.org/record/1167595
https://imisglobal.com/

Reasoning over Complex Temporal Specifications and Noisy Data Streams

reasoning over input event streams consisting of simple activities performed by one per-
son, such as ‘walking’ and ‘running’, as well as the coordinates and the orientation of the
tracked people. FVPs are used to model spatial relations between the entities appearing
in video frames, such as two people being close to each other, and composite human
activities that involve two people, like ‘meeting’ and ‘fighting’. We employed CAVIAR3, a
benchmark activity recognition dataset that contains 28 videos, adding up to 26,419 video
frames. In CAVIAR, the input events that occur at each video frame have been manually
annotated by the creators of the dataset. The task was to compute the maximal intervals
of FVPs expressing composite human activities.

City Transport Management This application involves the real-time monitoring of quali-
tative parameters regarding the operation of city transport vehicles, such as punctuality,
driving quality and passenger comfort, aiming towards the improvement of city transport.
The input events we used for this application were derived from sensors equipped to public
transport vehicles (buses and trams) and concern changes in the position and accelera-
tion of the vehicle, in-vehicle temperature, noise level and passenger density. FVPs are
related to the punctuality of a public transport vehicle, driving style and quality, passenger
and driver comfort, and passenger satisfaction. We employed a dataset that was supplied
by the PRONTO project [Artikis et al., 2012a], and contains real data. We used a version
of the dataset that was enriched with synthetic data, in order to include instances of event
types that were missing from the dataset, since the corresponding event processing com-
ponents were not yet functional at the time of data collection. The task was to compute
the maximal intervals of FVPs describing the quality of city transportation.

Multi-Agent Systems. We employed a simple voting protocol and an e-commerce pro-
tocol called NetBill. Figure 3.1 displays the dependency graphs of voting and NetBill.
We used synthetic data generators to produce the event streams of the two protocols.
In the case of voting, multiple agents and motions were generated, and the agents were
assigned roles. Then, agents proposed motions, some of which were subsequently sec-
onded and voted for. In the case of NetBill, quotes were progressively requested, pre-
sented, accepted and sometimes fulfilled. To simulate realistic multi-agent systems, the
data generators produced events which do not comply with the rules, e.g., closing the
ballot before all votes are cast, and not complying with the terms of a contract in NetBill.
The task was to compute the maximal intervals of (subsets of) the FVPs presented in the
dependency graphs of Figure 3.1.

Biological Feedback Processes. Our experiments included simplified models of feed-
back loops for immune response and phage infection (see Figure 1.1). We express feed-
back loops in RTEC→ by modelling biological variables, such as the concentration of h-
cells in immune system response, with FVPs and the value changes of these variables
with future FVP initiations. The feedback loops we studied evolve based solely on the ini-
tial values of their variables and the delays that guide the changes in the values of these
variables. In other words, there are no incoming streams of events in this application; the
input data concern the initial values of FVPs and the delays of future initiations. The task

3https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

P. Mantenoglou 98

https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

Reasoning over Complex Temporal Specifications and Noisy Data Streams

was to compute the maximal intervals of FVPs, expressing the values of the variables in
the feedback loops of Figure 1.1, as simulations progressed.

4.1.2 Competing Frameworks

We compared RTEC◦ against the following frameworks that support cyclic dependencies:
RTEC◦-naive, i.e., an implementation of RTEC◦ that processes cyclic dependencies using
rules (3.7)–(3.9) instead of the algorithms presented in Sections 3.2.3; and jREC, i.e., a
Java-Prolog implementation of the ‘Reactive Event Calculus’ [Chesani et al., 2010; Mon-
tali et al., 2013]. jREC has been evaluated in several application domains [Bragaglia et al.,
2012; Chesani et al., 2013; Loreti et al., 2019]. Moreover, it is an open-source implemen-
tation4, which facilitates the comparison against RTEC◦.

We compared RTEC→ against RTEC→-naive, i.e., an implementation of RTEC→ that em-
ploys rules (3.16)–(3.18) instead of the algorithms presented in Sections 3.3.4; s(CASP),
i.e., a query-driven execution model for Answer Set Programming with constraints, that
has been extended with Event Calculus-based reasoning [Arias et al., 2018; Arias et al.,
2022]; jRECfi, i.e., an implementation of jREC that supports future initiations [Montali et
al., 2013]; and GLK-EC, i.e., a framework that integrates the Event Calculus with a se-
quential logic specifying asynchronous automata in order to process biological feedback
loops [Srinivasan et al., 2022]. Moreover, we compared RTEC→ against frameworks
that do not support events with delayed effects. Our comparison included Fusemate,
i.e., a logic programming system that integrates the Event Calculus with description log-
ics [Baumgartner, 2021a]; Logica5, i.e., a Datalog-like programming language that com-
piles into SQL and runs on BigQuery6; jRECrbt, i.e., a version of jREC that employs red-
black trees as an indexing method for manipulating lists of events and FVP intervals effi-
ciently [Falcionelli et al., 2019]; and Ticker, i.e., a stream reasoning system that supports
a fragment of the logic-based language LARS [Beck et al., 2017; Beck et al., 2018]. Ticker
is the only LARS-based framework in which we were able to express a meaningful subset
of the event descriptions of our applications (see Section 2.5).

We compared RTECA with the following frameworks that support Allen relations: AE-
GLE [Georgala et al., 2016], i.e., a state-of-the-art system for Allen relation computation
that has been integrated in the link discovery framework LIMES [Ngomo et al., 2021]; and
D2IA, i.e., an extension of the Big Data stream processing engine Flink with interval-based
semantics that has been used to detect themaximal intervals of situations of interest [Awad
et al., 2022].

RTEC◦, RTEC→ and RTECA are written and executed in Prolog. For the remaining frame-
works, we used the programming language (version) recommended by its developers.
Moreover, we made sure that, in each experiment, all systems produced the same re-
sults. We used a single core of a desktop PC running Ubuntu 20.04, with Intel Core

4https://www.inf.unibz.it/~montali/tools.html
5https://github.com/EvgSkv/logica
6https://cloud.google.com/bigquery

99 P. Mantenoglou

https://www.inf.unibz.it/~montali/tools.html
https://github.com/EvgSkv/logica
https://cloud.google.com/bigquery

Reasoning over Complex Temporal Specifications and Noisy Data Streams

i7-4770 CPU @3.40GHz and 16GB RAM. The code of RTEC◦, RTEC→ and RTECA, as
well as the complete event descriptions and the datasets we employed, are available in
the repository of our frameworks7.

4.2 Experimental Results

We present an empirical evaluation of the extensions of RTEC that we proposed. In Sec-
tion 4.2.1, we provide an evaluation of RTEC◦. We demonstrate that RTEC◦ is much more
efficient than RTEC◦-naive, verifying our complexity analysis of RTEC◦. Afterwards, we
present a comparison of RTEC◦ against jREC on an event description with cycles, demon-
strating that RTEC◦ outperforms jREC by orders of magnitude. Moreover, our evaluation
shows that RTEC◦ supports reasoning over large, real data streams for maritime situa-
tional awareness, and that our extension does not compromise the efficiency of RTEC
(see Section 2.3) on event descriptions that do not include cyclic dependencies. Section
4.2.2 presents an evaluation of RTEC→, demonstrating that RTEC→ does not perform
redundant computations, and outperforms state-of-the-art frameworks, often by several
orders of magnitude. Moreover, RTEC→ reasons over large data streams with events
with delayed effects from the maritime domain very efficiently, and does not compromise
the performance of RTEC when these events are omitted. In Section 4.2.3, we provide
an evaluation of RTECA. We demonstrate that RTECA outperforms state-of-the-art frame-
works on the tasks of Allen relation computation in batch and windowing mode, and rea-
soning over large data streams and temporal specifications with Allen relations.

4.2.1 Stream Reasoning with RTEC◦

We begin with a set of experiments which demonstrate the benefits of our caching mech-
anism for processing FVPs with cyclic dependencies. For this purpose, we compared
RTEC◦ against RTEC◦-naive. Figure 4.1 shows the experimental results in voting and
NetBill. The presented reasoning times are an average of 100 windows, while RTEC◦
and RTEC◦-naive always produced the same FVP intervals. The step, i.e., the temporal
distance between two consecutive query times, was set to 10 time-points. We used amax-
imum response time of 10 seconds per window, i.e., when the reasoning time exceeded
this threshold, then we stopped the execution. The reasoning times of RTEC◦-naive, using
windows of 80 time-points, exceeded this threshold for both multi-agent systems proto-
cols and, therefore, are not presented in Figure 4.1. Our experimental results show that,
as we increase the window size, the reasoning times of RTEC◦-naive increase exponen-
tially, while RTEC◦ scales much better. These results are consistent with our complexity
analysis, which indicated that the absence of the caching mechanism of RTEC◦ results in
unnecessary re-computations, that increase with the window size.

In the next set of experiments, we compared RTEC◦ against jREC. Figure 4.2 shows the
7https://github.com/aartikis/rtec

P. Mantenoglou 100

https://github.com/aartikis/rtec

Reasoning over Complex Temporal Specifications and Noisy Data Streams

10
500
108

20
1K
132

40
2K
232

80
4K
464

0

2

4

6

8

10

Window size

R
e
a
so

n
in

g
ti
m

e
(s
e
c
)

(a) voting

10
13K
5K

20
27K
6K

40
53K
12K

80
106K
24K

0

2

4

6

8

10

Window size

(b) NetBill

RTECo RTECo-naive

Figure 4.1: The reasoning times of RTEC◦ and RTEC◦-naive in (a) voting and (b) NetBill.
The horizontal axes denote window size in terms of time-points (top), average number
of input entities (middle) and average number of computed FVP intervals (bottom) per
window.

80
0

1.
6K

3.
2K

6.
4K

1

101

102

103

104

105

106

Number of events

R
e
a
so

n
in

g
ti
m

e
(m

s)

RTECo

jREC

Figure 4.2: RTEC◦ and jREC computing the maximal intervals of the status fluent of the
voting protocol.

results of the comparison. Both systems were evaluated on a fragment of the event de-
scription of the voting protocol. We restricted attention to the status fluent, the specification
of which creates a cycle in the dependency graph (see Figure 3.1). The task, therefore,
was to compute the maximal intervals for which status has some value (proposed , voting ,
voted , null) continuously. We used a window size of 10 time-points for RTEC◦ and in-
structed jREC to evaluate the trace of input events every 10 time-points. We performed
experiments for windows with 800–6,400 events, and made sure that both systems com-
puted the same FVP intervals. Figure 4.2 shows that the use of RTEC◦ leads to significant
performance gain. In the case of 6,400 events, RTEC◦ computes the maximal intervals
of status in less than 5 seconds, while jREC requires about 8 minutes to derive the same
intervals.

In addition to multi-agent systems, we evaluated RTEC◦ on composite event recognition
for maritime situational awareness. We relied on real data, i.e., position signals from

101 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

2 4 8 16
0.2

0.4

0.6

0.8

1

Window size (hours)

f1
-s
c
o
re

5%

10%

20%

40%

80%

Delayed Event %

(a) Brest
delayed event arrivals

2h
7K
5K

4h
13K
6K

8h
26K
9K

16h
53K
14K

0

0.5

1

1.5

2

Window size

R
e
a
so

n
in
g
ti
m
e
(s
e
c
)

(b) Brest
cyclic pattern incl.

2h
180K
104K

4h
360K
157K

8h
718K
264K

16h
1430K
479K

0

1

2

3

4

5

Window size

R
e
a
so

n
in
g
ti
m
e
(m

in
)

(c) all European seas
cycle pattern incl.

Figure 4.3: (a) The predictive accuracy of RTEC◦ in the presence of delayed event arrivals
on the dataset of Brest. (b)–(c) RTEC◦ for maritime situational awareness on the datasets
of (b) Brest and (c) Europe. The horizontal axes denote window size in terms of hours
(top), average number of input entities (middle) and average number of computed FVP
intervals (bottom) per window.

thousands of vessels, producing millions of input events. Real data streams often include
delayed event arrivals. In the maritime domain, vessel position signals may arrive with a
delay that exceeds 8 hours, especially when such signals are relayed through satellites.
This issue may be addressed by longer, overlapping windows (see Section 2.3). To sim-
ulate realistic scenarios, we introduced delays into the maritime datasets. The temporal
extent of the delay was set using a Gamma distribution. The percentage of delayed event
arrivals, which were chosen uniformly, ranges from 5% to 80%. Figure 4.3 (a) shows
the predictive accuracy of RTEC◦ when processing data streams with delayed event ar-
rivals. The step was set to 2 hours. We varied the size of the windows from 2 hours to
16 hours. The f1-scores were derived by comparing the intervals computed by RTEC◦
on data streams with delayed event arrivals to the intervals computed by RTEC◦ on the
respective data streams without delayed event arrivals. Figure 4.3 (a) demonstrates the
necessity of longer windows in the maritime domain.

Figures 4.3 (b) and (c) displays the average reasoning times of RTEC◦ per window size
when processing real maritime data. In the dataset of Brest, the 2-hour window includes
on average 7K events/vessel position signals, while the 16-hour window includes approx-
imately 53K events. The computed FVP intervals range from 5K, in the 2-hour window,
to 14K in the 16-hour window. In the significantly larger dataset concerning all European
seas, the windows include 180K–1,431K events, while the computed FVP intervals range
between 104K and 479K. We introduced delays to 40% of the input events in the data
streams. Figures 4.3 (b) and (c) shows that RTEC◦ is capable of real-time stream rea-
soning in real-world applications. In the dataset of Brest, e.g., RTEC◦ reasons about the
events of a 16-hour window in just over 1.5 seconds, in order to recognise a wide range
of maritime activities of interest, such as fishing, tugging, etc., while in the dataset of all
European seas, RTEC◦ requires just below 3 minutes to reason about a 16-hour window.

For completeness, we compared RTEC◦ and RTEC in temporal specifications without

P. Mantenoglou 102

Reasoning over Complex Temporal Specifications and Noisy Data Streams

17K 35K 53K
0

100

200

300

400

R
e
a
so

n
in

g
ti
m

e
(m

s)

(a) Human
Activity Recognition

Window size
(number of input events)

6K 13K 19K
0

100

200

300

400

R
e
a
so

n
in

g
ti
m

e
(m

s)

(b) City
Transport Management

Window size
(number of input events)

RTECo RTEC

Figure 4.4: The reasoning times of RTEC◦ and RTEC in temporal specifications without
cyclic dependencies: (a) human activity recognition and (b) city transport management.

cyclic dependencies, i.e., the specifications used for human activity recognition and city
transport management in [Artikis et al., 2015]. Figure 4.4 displays the average reasoning
times. In both applications, the reasoning times of RTEC◦ are comparable to those of
RTEC. In other words, the mechanism of RTEC◦ for handling FVPs with cyclic dependen-
cies does not impose a computational overhead in applications without such dependen-
cies.

4.2.2 Stream Reasoning with RTEC→

We present the experimental results of our evaluation of RTEC→. For our evaluation
on feedback loops, we performed an experiment for each possible configuration of initial
variable values. For the remaining experiments, each result is the average of at least
30 queries. We report the standard deviations only when they are not negligible. Fur-
thermore, we terminated all experiments that exceeded 15 minutes; we do not report the
reasoning times of these experiments.

In the first set of experiments, we compared RTEC→ against RTEC→-naive. Figure 4.5
shows the results of the comparison on voting and NetBill. Note that the event descrip-
tion of voting does not include future initiations that may be postponed. The window size
ranges from 10 to 80 time-points, while the ‘step’, i.e., the distance between two consec-
utive query times, was set to 10 time-points. In NetBill, e.g., the windows contain, on
average, 6K to 44K input events. Our results show that, as the window size increased,
RTEC→-naive required a significantly larger number of rule computations to derive the
same FVP intervals as RTEC→. The absence of a caching mechanism resulted in redun-
dant rule computations, verifying our complexity analysis.

In the second set of experiments, we compared RTEC→ with other systems that sup-

103 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

10
10K
3K

20
20K
5K

40
40K
9K

80
80K
17K

0

100K

200K

300K

Window size

R
u
le

e
v
a
lu
a
ti
o
n
s

(a) voting

10
6K
4K

20
11K
6K

40
22K
11K

80
44K
21K

0

100K

200K

300K

Window size

(b) NetBill;
with p

10
6K
3K

20
11K
5K

40
22K
9K

80
44K
17K

0

200K

400K

600K

800K

1M

Window size

(c) NetBill;
without p

RTEC→ RTEC→-naive

Figure 4.5: Stream reasoning in (a) voting with delayed effects that may not be postponed,
and NetBill with delayed effects that (b) may and (c) may not be postponed. The window
size is presented as in Figure 4.1. The vertical axes show the avg. number of FVP rule
evaluations.

port events with delayed effects. These systems, i.e., s(CASP), jRECfi and GKL-EC,
do not support delayed effects that may postponed. First, we compared RTEC→ with
s(CASP) and jRECfi on small subsets of voting and NetBill. The left diagram of Figure 4.6
shows the results of the comparison on voting; the results on NetBill are similar, and thus
omitted. The window size and the step of RTEC→ were set to 10 time-points. s(CASP)
and jRECfi do not use windows; they compute the values of fluents incrementally at each
time-point. Figure 4.6 (left) presents the total reasoning times of RTEC→, s(CASP) and
jRECfi for streams of increasing size. We observe that RTEC→ scales much better than
s(CASP) and jRECfi. s(CASP) performs point-based reasoning, as opposed to interval-
based reasoning, which proved to be computationally expensive. jRECfi and s(CASP)
evaluated future initiations without caching previous derivations, which led to unnecessary
re-computations. Moreover, jRECfi and s(CASP) do not have a mechanism for ‘forgetting’
earlier events of the data stream, which makes them inappropriate for streaming applica-
tions. These performance issues did not allow us to perform larger-scale comparisons.

GKL-EC was developed specifically for processing biological feedback loops, and thus we
assessed it only on this domain. The comparison concerns two feedback loops expressing
immune response in vertebrates and the invasion of a phage in a bacteria cell [Srinivasan
et al., 2022]. In immune response, the presence of an antigen may lead to an increase
in the production of antibodies after a certain delay. In phage invasion, the activation
of a bacterial gene produces, after a delay, a protein that suppresses viral genes. We
instructed RTEC→ and GKL-EC to compute the values of all variables in these loops as
time progressed. The window size and the step of RTEC→ were set to 10 time-points.
GLK-EC does not use windows. Figures 4.6 (middle and right) show the reasoning times of
RTEC→ andGKL-EC for computing the values of loop variables over streams of increasing
size. Our results demonstrate that RTEC→ scales significantly better than GKL-EC. GKL-

P. Mantenoglou 104

Reasoning over Complex Temporal Specifications and Noisy Data Streams

10 20 40 801
101
102
103
104
105
106

R
ea

so
ni

ng
ti

m
e

(m
s)

200 400 800
16001

101
102
103
104
105
106

200400 800
1600

Number of events Number of events
RTEC→ s(CASP) jRECfi GKL-EC

Figure 4.6: Stream reasoning in a fragment of voting (left), and feedback loops for immune
response (middle) and phage infection (right). The horizontal axes show the stream size;
the vertical axes show the avg. of the total execution times.

10 20 40 80
1

101
102
103
104
105
106

Number of eventsR
e
a
so

n
in
g
ti
m
e
(m

s)

4K 8K16K 32K
1

101
102
103
104
105
106

Number of events

RTEC→ s(CASP) Ticker Fusemate Logica jRECfi jRECrbt

Figure 4.7: Stream reasoning for computing quote.

EC performs point-based reasoning without ‘forgetting’, which hindered its performance.

In the third set of experiments, we compared RTEC→ with related systems on a task that
does not require future initiation computation. We instructed all systems to compute the
maximal intervals of the quote fluent, as defined by rules (3.14) and (3.15), i.e., a speci-
fication of quote without future initiations. The comparison included s(CASP), jRECfi, as
well as systems without support for events with delayed effects, i.e., Ticker, Fusemate,
Logica and jRECrbt. Figure 4.7 (left) shows the total reasoning times over streams with
size ranging from 10 to 80 events. The window size and the step of RTEC→ were set to 10
time-points, while the remaining systems do not employ windows. RTEC→ outperformed
all frameworks, in most cases by several orders of magnitude. Ticker, Fusemate and
Logica are not interval-based. jRECrbt scaled better than jRECfi thanks to FVP interval in-
dexing. RTEC→ and jRECrbt were the most efficient systems, and thus we compared them
further, using streams with thousands of events. Figure 4.7 (right) presents our results,
demonstrating the benefits of RTEC→.

In the last set of experiments, we evaluated RTEC→ on maritime situational awareness.
We used real streams containingmillions of events that describe the activities of thousands

105 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

2h
7K
5K

4h
13K
6K

8h
26K
9K

16h
53K
14K

0

0.2

0.4

0.6

0.8

R
e
a
so

n
in
g
ti
m
e
(s
e
c
)

2h
7K
2K

4h
13K
2K

8h
26K
3K

16h
53K
5K

Window size

2h
180K
43K

4h
360K
62K

8h
718K
103K

16h
1430K
183K

0

1

2

3

4

5

Window size

R
e
a
so

n
in
g
ti
m
e
(m

in
)

RTEC→ RTEC

Figure 4.8: Maritime situational awareness on the datasets of Brest for FVPs without future
initiations (left) and FVPs with future initiations (middle), and all European seas for FVPs
with future initiations (right). The horizontal axes have the same format as in Figure 4.3.

of vessels. The volume of these streams did not allow for a comparison with the systems
discussed earlier in this section. Figure 4.8 presents our results. The window size ranged
from 2 to 16 hours and the step was set to 2 hours. Overlapping windows are necessary in
the maritime domain due to the inherent lags in the arrival of vessel position signals, that
may exceed 8 hours, especially concerning signals relayed through satellites [Pitsikalis et
al., 2019]. First, we compared RTEC→ and RTEC (Section 2.3) on the dataset concerning
the area of Brest, France, on all FVPs except those subject to future initiations, since
RTEC cannot handle events with delayed effects. The results of Figure 4.8 (left) indicate
that our extension of RTEC does not compromise efficiency in temporal specifications
without future initiations. Second, we evaluated RTEC→ on the detection of maritime
activities specified by means of FVPs with future initiations, i.e., trawling and search and
rescue operations. Figures 4.8 (middle and right) display the results on the datasets of
Brest and all European seas, respectively. Our results show that RTEC→ is very efficient in
challenging, real applications including events with delayed effects and complex temporal
specifications. In the case of Brest, e.g., RTEC→ required less than 0.6 seconds to reason
over the events of a 16-hour window, while in the case of all European seas RTEC→

reasoned over 16-hour windows, including approx. 1.4M events, in less than 3 minutes.

4.2.3 Stream Reasoning with RTECA

We present the experimental results of our comparison of RTECA against AEGLE and
D2IA. AEGLE does not support windowing or the computation of situations of interest.
Thus, the aim of the first set of experiments was to compare RTECA, AEGLE and D2IA in a
batch setting, for Allen relation computation without deriving new situations. We instructed
these systems to derive all interval pairs satisfying an Allen relation among lists of maximal
intervals during which composite maritime activities were detected on the Brest dataset.
We evaluated the efficiency of each framework as the number of input intervals increases,
while making sure that all systems produced the same interval pairs (see Lemma 1 for the

P. Mantenoglou 106

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 4.1: Average reasoning times for Allen relation computation ((a) and (b)) and CER
(c) in milliseconds.

Batch size Reasoning Time

Input
Intervals RTECA AEGLE D2IA

200 1 980 2K
2K 14 4K 6K
20K 154 71.5K 395K
200K 1.8K MEM >3.6M

(a) Batch setting.

Window size Reasoning Time Output
Interval Pairs

Days Input
Intervals RTECA D2IA RTECA D2IA

1 125 1 48 5K 5K
2 250 2 164 19K 18K
4 500 4 568 72K 71K
8 1K 8 1.7K 237K 236K
16 2K 15 7.8K 878K 874K

(b) Streaming setting.

Window size Reasoning Time Output
Intervals

Days Input
Intervals RTECA D2IA RTECA D2IA

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K
16 297K 285 2.7K 77K 76K

(c) CER with Allen relations.

correctness of RTECA in a batch setting). As expected, the most common Allen relation
was before, while relations requiring endpoing equality, i.e., meets, starts, finishes and equal,
were less frequently satisfied. Table 4.1a shows the average reasoning times of RTECA,
AEGLE and D2IA for computing all Allen relations among input lists containing 200–200K
intervals. All results displayed in Table 4.1 are the average of 30 experiments. Since
AEGLE and D2IA do not assume that the input lists are temporally sorted, the interval lists
of composite maritime activities were not sorted. The performance of AEGLE and D2IA
on sorted input lists is almost identical to that presented in Table 4.1a, and thus omitted
here. For RTECA, we had to sort the input lists prior to Allen relation computation; the cost
of sorting is included in the reported times of RTECA.

Table 4.1a shows that the reasoning time of RTECA increases linearly with the input size,
verifying our complexity analysis (see Proposition 10). Moreover, RTECA outperforms
AEGLE and D2IA by 2–3 orders of magnitude. For example, in the experiments with
200K input intervals, RTECA was able to compute all interval pairs satisfying an Allen re-
lation in about 1.9 seconds. In contrast, AEGLE terminated with a memory error, while
we killed the execution of D2IA because it lasted for more than one hour. AEGLE sorted
each input interval list by start or end endpoint, depending on the relation under eval-
uation. However, both sorting operations produce the same result on a list of maximal
intervals, and thus only one of them is sufficient. RTECA leverages the common assump-
tion in stream reasoning that intervals are maximal, and avoids such unnecessary re-
computations. D2IA has higher reasoning times than RTECA and AEGLE, because it is
significantly slower when computing before, which is satisfied by most interval pairs in each
experiment. RTECA evaluates before very efficiently as it derives all target intervals sat-
isfying before with some source interval in a single iteration. Furthermore, in contrast to
D2IA and AEGLE, RTECA uses a compact representation for the computed interval pairs
in order to avoid their explicit enumeration (see lines 6 and 8 of Algorithm 8).

In our next set of experiments, we compared RTECA with D2IA for Allen relation computa-
tion in a streaming setting, but without deriving the intervals of situations of interest. D2IA
does not support overlapping windows for Allen relations and does not cache intervals
that may satisfy an Allen relation, such as before, in the future. Thus, to facilitate a fair
comparison, we set the step of RTECA to the window size and the threshold mem to zero.

107 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 4.1b presents the average reasoning times of RTECA and D2IA, and the average
number of interval pairs computed by each system (see ‘output interval pairs’). The input
lists were provided to each system in windows, ranging from 1 day, including approx. 125
intervals, to 16 days, including 2K intervals. Our results show that RTECA remains orders
of magnitude faster than D2IA. Moreover, the cost of our caching mechanism is negligible
(e.g., compare the second line of Table 4.1a with the last line of Table 4.1b), verifying our
complexity analysis. Note that RTECA computed more interval pairs than D2IA in most
settings. This is due to the fact that D2IA does not include a technique for transferring
intervals to future windows (with the exception of open intervals), compromising correct-
ness. See Lemma 2 for the correctness of RTECA in a streaming setting.

In the final set of experiments, we compared RTECA and D2IA on stream reasoning, us-
ing fifteen patterns of composite maritime activities with Allen relations, such as those
presented in Section 3.4.2. Given a pattern including allen(rel,S, T , outMode, I), RTECA
computes all interval pairs of S and T satisfying rel, and applies outMode to the computed
pairs, in order to produce the maximal intervals of the composite activity defined by the
pattern. In contrast, D2IA computes only the union of the interval pairs satisfying an Allen
relation within a composite activity pattern, i.e., D2IA does not allow the specification of
another output mode. To facilitate a fair comparison, we set the outMode of RTECA to union
in all maritime patterns.

Table 4.1c presents the average reasoning times of RTECA and D2IA, and the average
number of composite activity intervals (see ‘output intervals’). The number of input in-
tervals is significantly larger as compared to our previous experiments, because the input
intervals correspond to activities performed by all vessels in the dataset. In stream reason-
ing, we are interested in the combinations of input items indicated by the composite activity
patterns, and not on evaluating all possible interval combinations, as in the previous ex-
periments. Consequently, the number of composite activity intervals is much smaller than
the number of input intervals. Our results show that RTECA is significantly faster than
D2IA, without compromising correctness (in some cases D2IA misses composite activities
due to the absence of interval caching).

4.3 Discussion

We presented an experimental evaluation of RTEC◦, RTEC→ and RTECA on multi-agent
systems, biological feedback processes and three composite event recognition applica-
tions, i.e., maritime situational awareness, human activity recognition and city transport
management. RTEC◦ and RTEC→ employ incremental caching techniques in order to
avoid redundant computations. We compared these frameworks with ‘naive’ versions of
RTEC◦ and RTEC→ that do not use incremental caching techniques, demonstrating the
benefits of such techniques. Moreover, we compared RTEC◦ and RTEC→ against RTEC
on applications whose event descriptions do not include cyclic dependencies or events
with delayed effects, demonstrating that our extensions of RTEC do not impose a compu-
tational overhead on reasoning in such applications. In order to assess whether RTEC◦,

P. Mantenoglou 108

Reasoning over Complex Temporal Specifications and Noisy Data Streams

RTEC→ and RTECA are suitable for stream reasoning, we evaluated the efficiency of these
systems on large, real data streams for maritime situational awareness, showing that our
systems require a few seconds to reason over thousands of events, while deriving the
maximal intervals of thousands of instances of composite maritime activities. In order to
demonstrate the contributions of our proposed systems with respect to the literature, we
compared RTEC◦, RTEC→ and RTECA with state-of-the-art frameworks that support tem-
poral specifications with cyclic dependencies, events with delayed effects and situations
defined in terms of Allen relations. Our experiments showed that RTEC◦, RTEC→ and
RTECA outperform the state of the art, in some cases by several orders of magnitude.
Moreover, in order to justify our choice of extending RTEC, as opposed to some other
system found in the literature, we compared RTEC→ with state-of-the-art frameworks on
an event description that does not include events with delayed effects, demonstrating the
superior reasoning efficiency of RTEC→.

RTEC◦, RTEC→ and RTECA cannot handle noise and uncertainty, which is inherent in real
applications [Alevizos et al., 2017]. The remainder of this thesis concerns the treatment
of noisy data streams. We review the literature on (stream) reasoning under uncertainty,
and then propose an extension of a probabilistic event recognition framework, in order to
operate in a streaming setting.

109 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 110

Reasoning over Complex Temporal Specifications and Noisy Data Streams

5. BACKGROUND: REASONING UNDER UNCERTAINTY

We provide the necessary background material for the specification of the ‘online Prob-
abilistic Interval-based Event Calculus’ (oPIEC), i.e., the framework that we propose for
handling noisy data streams. oPIEC is based on logic programming and employs the
Event Calculus for representing events and their effects over time (see Sections 2.1 and
2.2). First, we discuss the field of probabilistic logic programming, where the syntax of
logic programming is extended with constructs for representing uncertainty. We focus
our attention on the probabilistic logic programming language ProbLog, as it is the main
building block of the oPIEC framework. Second, we describe Prob-EC, a probabilistic
extension of the Event Calculus that is based on ProbLog. Prob-EC reasons over prob-
abilistic events and derives the probabilities of situations of interest at each point in time.
Prob-EC serves as the first component in the pipeline of oPIEC (see Figure 6.1). Third,
we discuss PIEC, an interval-based extension to Prob-EC, which avoids the inconsisten-
cies of point-based reasoning and improves upon its predictive accuracy. PIEC does not
support stream reasoning; oPIEC is an extension of PIEC that is designed for reasoning
over noisy data streams.

Prob-EC and PIEC have been presented in the context of composite event recognition and
evaluated on a composite event recognition application, namely human activity recogni-
tion [Skarlatidis et al., 2015a; Artikis et al., 2021]. Moreover, our empirical evaluation of
oPIEC and its bounded-memory variants, i.e., oPIECb and oPIECbd, concerns two com-
posite event recognition tasks, i.e., human activity recognition and maritime situational
awareness. Thus, in order to be consistent with the published material, we focus our
attention on composite event recognition in the following chapters. Note, however, that
these frameworks can be used in the broader class of stream reasoning tasks. For exam-
ple, we could use oPIECbd to compute the probabilities that agents hold certain normative
positions over some periods of time, based on streams of agent actions that are associ-
ated with probability values.

5.1 Probabilistic Logic Programming

Probabilistic logic programming is the combination of logic programming with probability
theory. We summarise probabilistic logic programming, following [Riguzzi and Swift, 2018;
Riguzzi, 2023], and ProbLog, following [Fierens et al., 2014; Raedt and Kimmig, 2015;
Skarlatidis et al., 2015a].

The most prominent semantics that we find in the literature for probabilistic logic programs
is the distribution semantics [Sato, 1995]. Under the distribution semantics, a probabilistic
logic program without function symbols defines a probability distribution over normal logic
programs, which are called possible worlds1. In this context, the success probability of a

1The term (possible) world has also been used to denote the well-founded models [van Gelder et al.,
1991] of the logic programs that are induced by a probabilistic logic program [Fierens et al., 2014]. We restrict

111 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

query is derived by marginalisation, i.e., by summing up the probabilities of the possible
worlds whose intended interpretation is a model of the query. The distribution over pro-
grams is defined by encoding random choices for clauses; these choices are independent
from each other.

Numerous probabilistic logic programming frameworks have adopted the distribution se-
mantics, including PRISM [Sato, 2008], Logic Programs with Annotated Disjunctions [Ven-
nekens et al., 2004], P-log [Baral et al., 2009] and ProbLog [De Raedt et al., 2007; Fierens
et al., 2014]. The differences in the languages of these frameworks are merely syntacti-
cal, as they lie only in the way the choices for clauses are encoded and the probabilities
for these choices are stated. Thus, all the aforementioned frameworks have the same
expressive power (see Section 2.4 of [Riguzzi, 2023]). Therefore, in the following, we
focus on the semantics of the language of the probabilistic logic programming framework
ProbLog, which is the main building block of oPIEC, without sacrificing the generality of
our discussion.

A ProbLog program Π consists of a set of rules R and a set of probabilistic facts F , where
probabilistic fact p :: f indicates that fact f holds as true with probability p in each one
of its groundings. The literals whose atoms appear in probabilistic facts, i.e., the prob-
abilistic literals, are disjoint from the literals whose atoms appear in the heads of rules,
i.e., the derived literals. Each ground probabilistic fact p :: f expresses an atomic choice,
i.e., we can choose to include f as a ground fact of the program (with probability p) or
discard it (with probability 1−p). A total choice is obtained by making an atomic choice
for each ground probabilistic fact. Each total choice σ on the set of probabilistic facts F
identifies a possible world wσ of Π , i.e., wσ is a normal logic program in the sample space
of Π . The probability of possible world wσ is equal to the product of the probabilities of
the (independent) atomic choices that are included in total choice σ. The probability of a
query q is computed as the sum of the probabilities of the possible worlds whose intended
interpretation is a model of q .

Unfortunately, it is not guaranteed that the possible worlds of an arbitrary probabilistic
logic program have a clear semantics. Recall, e.g., that the program containing the rules
‘a ← not b’ and ‘b ← not a ’ has two models M1 ={a} and M2 ={b}, and there is no way
to distinguish which one of these models should be preferred (see Section 2.1). For this
reason, ProbLog is restricted to probabilistic logic programs whose sample space contains
only normal logic programs that have a two-valued well-founded model [Riguzzi and Swift,
2013]. We restrict attention to locally stratified logic programs (see Section 2.1), which
have a two-valued well-founded model (see Theorem 6.1 in [van Gelder et al., 1991]),
and are thus supported by ProbLog.

In activity recognition, input eventsmay exhibit uncertainty, because, e.g., of the temporary
malfunction of a camera or object occlusion. To address this issue, we may use ProbLog
and model event occurrences as probabilistic facts. Consider the following example:

Example 23 (Human Activity Recognition in ProbLog):We define ProbLog pro-
gram Π =R ∪ F , where R contains the rules defining the fluent-value pair (FVP)

ourselves to probabilistic logic programs where each possible world has a unique well-founded model.

P. Mantenoglou 112

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.1: Total choices over the ProbLog program of Example 23 and the probabilities of
the corresponding possible worlds.

Total choice Prob.
σ1 {happensAt(walking(mike), 1), happensAt(walking(sarah), 1), happensAt(walking(mike), 2)} 0 .264

σ2 {happensAt(walking(mike), 1), happensAt(walking(sarah), 1)} 0 .058

σ3 {happensAt(walking(mike), 1), happensAt(walking(mike), 2)} 0 .31

σ4 {happensAt(walking(sarah), 1), happensAt(walking(mike), 2)} 0 .113

σ5 {happensAt(walking(mike), 1)} 0 .068

σ6 {happensAt(walking(sarah), 1)} 0 .025

σ7 {happensAt(walking(mike), 2)} 0 .133

σ8 { } 0 .029

‘moving(P1 ,P2)= true’ that we introduced in Example 1. We repeat these rules below:

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(similarOrientation(P1 ,P2)= true, T).

(5.1)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

(5.2)

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(active(P1), T),
happensAt(active(P2), T).

(5.3)

We assume that there is uncertainty in the detection of simple human activities, such as
walking and being ‘active’, whereas contextual information, such as coordinates and ori-
entation, are derived with certainty. Based on the input stream, we may have the following
contextual information:

holdsAt(close(mike, sarah)= true, 1). (5.4)
holdsAt(similarOrientation(mike, sarah)= true, 1). (5.5)
holdsAt(close(mike, sarah)= false, 2). (5.6)

Facts (5.4)–(5.5) express, respectively, that two people, Mike and Sarah, are close to each
other and have a similar orientation at time-point 1 . Fact (5.6) states that Mike and Sarah
are not close to each other at time-point 2 . Such non-probabilistic facts can be viewed
as probabilistic facts with probability 1 , and do not affect the distribution over the possible
worlds of the program.

Suppose that F contains the following probabilistic facts, expressing uncertain simple ac-

113 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

tivities:

0 .7 :: happensAt(walking(mike), 1).

0 .46 :: happensAt(walking(sarah), 1).
0 .82 :: happensAt(walking(mike), 2).

F contains 3 independent probabilistic facts, and thus the numbers of total choices and
possible worlds of Π are equal to 2 3 = 8 . Table 5.1 presents the total choices for the prob-
abilistic facts in F , along with the probabilities of the corresponding possible worlds of Π .
For example, total choice σ4 , according to which we include happensAt(walking(sarah), 1)
and happensAt(walking(mike), 2) in the program, but omit happensAt(walking(mike), 1), in-
duces the possible world wσ4 , i.e., a normal logic program that contains rules R and the
following non-probabilistic facts:

happensAt(walking(sarah), 1).
happensAt(walking(mike), 2).

The probability of wσ4 is equal to the product of the probabilities of the atomic choices that
comprise σ4 , i.e., P(wσ4)=(1 − 0 .7)× 0 .46 × 0 .82 = 0 .113 . The sum of the probabilities
of all 8 possible worlds of Π is equal to 1 .

Consider the following queries:

init1 : initiatedAt(moving(mike, sarah)= true, 1)
term1 : terminatedAt(moving(mike, sarah)= true, 1)
init2 : initiatedAt(moving(mike, sarah)= true, 2)

term2 : terminatedAt(moving(mike, sarah)= true, 2)

According to rule (5.1) and facts (5.4)–(5.5), init1 is true in the possible worlds
where Mike and Sarah are both walking at time-point 1 . Thus, the probability of
query init1 is equal to sum of the probabilities of possible worlds σ1 and σ2 , i.e.,
P(init1)=P(σ1)+P(σ2)= 0 .264+0 .058 = 0 .322 . Similarly, based on rules (5.2)–(5.3) and
fact (5.6), query term2 is true in the possible worlds where Mike or Sarah is walking at
time-point 2 , and thus P(term2)=P(σ1)+P(σ3)+P(σ4)+P(σ7)= 0 .82 . Moreover, based
on rules (5.2)–(5.3), P(term1)= 0 , since Mike and Sarah are close to each other at time-
point 1 (see fact (5.4)), and there is no possible world where Mike or Sarah is ‘active’
at time-point 1 . Finally, P(init2)= 0 , because there is no possible world where Sarah is
walking at time-point 2 , and thus it is not possible for rule (5.1) to fire at time-point 2 . ♢

As illustrated in Example 23, we may compute the probability of a query by enumerating
the possible worlds of the program and then summing up the probabilities of the possible
worlds in which the query is true. This method, however, is intractable, as the number of
possible worlds is exponential to the number of probabilistic facts in the program. In gen-
eral, exact probabilistic inference is computationally expensive (see Chapter 7 of [Riguzzi,
2023]).

P. Mantenoglou 114

Reasoning over Complex Temporal Specifications and Noisy Data Streams

The probability of a query q can be derived based on the set of the possible explana-
tions/proofs of q . In ProbLog, the probability of a query q , which matches the head of some
rules, is equal to the probability of the disjunction of the bodies of these rules, where each
body is a conjunction of (possibly probabilistic) literals. As a result, the success probability
of q is computed as follows:

P(q)=P(
∨

e∈Proofs(q)

∧
li∈e

li) (5.7)

According to equation (5.7), the probability of a query q is equal to the probability that the
disjunctive normal form (DNF) formula on the right-hand side of the equation evaluates
to true, based on the probabilistic facts of the program. However, it is not straightforward
to transform the probability of a DNF to a sum of products. The required independence
conditions do not generaly hold, as the conjunctions in the DNF, i.e., the conditions of
the rules defining q , are not necessarily disjoint. In order to make the proofs disjoint, one
would have to enhance every conjunction with negative literals, in order to exclude worlds
whose probability has already been computed in previous conjunctions of the DNF. This
problem is called the disjoint-sum problem and is known to be #P-hard [Valiant, 1979].

For this reason, ProbLog does not perform probabilistic inference using equation (5.7).
We employ the second version of ProbLog2, which performs probabilistic inference as fol-
lows. First, the program is grounded and the part of the ground program that is relevant to
the query is converted to a weighted Boolean formula. The weight of a probabilistic literal
is derived from the probability of the corresponding probabilistic fact of the program, while
the weight of a derived literal is always 1 . As a result, probabilistic inference is reduced
to weighted model counting (WMC) on the resulting weighted formula. Second, ProbLog
handles the WMC task using knowledge compilation, i.e., a translation of the weighted
Boolean formula into a form on which WMC is tractable [Darwiche and Marquis, 2002].
This way, the high cost of probabilistic reasoning is pushed into an off-line compilation pro-
cess. ProbLog first transforms the logical part of the Boolean formula into a deterministic,
decomposable negation normal form (d-DNNF) [Darwiche and Marquis, 2002], and then
turns the resulting d-DNNF into an arithmetic circuit by taking into account the weights
of the literals in the formula [Chavira and Darwiche, 2008]. WMC amounts to evaluating
the resulting arithmetic circuit, which is a linear operation to the number of nodes in the
arithmetic circuit. In the worst case, the size of the arithmetic circuit is exponential to the
size of the weighted Boolean formula we started with. Nevertheless, the second version of
ProbLog has proven scalable in several probabilistic inference tasks [Fierens et al., 2014].

ProbLog integrates probability theory into logic programming, and comes with several ad-
vantages, such as an intuitive modelling of uncertainty using probabilistic facts, a formal
and declarative semantics, as well as efficient algorithms for probabilistic inference. Un-
fortunately, ProbLog is not designed to reason over the dynamic domains that we find in
stream reasoning applications. For instance, ProbLog does not have a built-in represen-
tation of time, and thus does not directly support time-varying properties. In Example 23,

2https://dtai.cs.kuleuven.be/problog/

115 P. Mantenoglou

https://dtai.cs.kuleuven.be/problog/

Reasoning over Complex Temporal Specifications and Noisy Data Streams

e.g., we used a ProbLog program to deduce the probability that Mike and Sarah start mov-
ing together at time-point 1 . It is not clear from the program, however, how the probability
of the ‘moving(mike, sarah)= true’ evolves over time and how it may be affected by subse-
quent initiations/terminations of the activity. To address this issue, we employ Prob-EC, a
framework that incorporates the Event Calculus (see Section 2.2) into ProbLog.

5.2 Probabilistic Event Calculus

We describe Prob-EC, i.e., a framework that integrates the Event Calculus into ProbLog.
Prob-EC serves as the first component of oPIEC.We summarise Prob-EC, following [Skar-
latidis et al., 2015a]. We discuss Prob-EC, as well as the systems that will follow, in the
context of composite event recognition (CER). For this reason, we often use the term
‘simple-derived event’ (SDE) for an input event of the domain, and the term ‘composite
event’ (CE) for a situation of interest of the domain.

The language of Prob-EC extends ProbLog with the predicates of the Event Calculus (see
Table 2.1 and Section 2.2). happensAt(E , T) denotes that an SDE E takes place at time-
point T . Prob-EC processes uncertain indications of SDEs, i.e., probabilistic facts in the
form of p :: happensAt(E , T), and derives the probabilities of CEs over time by means of
Event Calculus-based reasoning. To do this, Prob-EC is equipped with a set of domain-
specific initiatedAt/terminatedAt rules, which are used the derive the probabilities of CE
initiations/terminations over input streams of probabilistic happensAt facts. For instance,
Prob-EC may employ the probabilistic facts and the rules of Example 23, in order to com-
pute the probabilities of the initiations/terminations of the ‘moving’ CE over time. This type
of probabilistic inference is done using the probabilistic reasoning algorithms of ProbLog.

To derive CE occurrences, i.e., holdsAt(CE = true, T), Prob-EC integrates the law
of inertia (see axioms (2.1)–(2.4)) to its probabilistic framework. The probability of
holdsAt(CE = true, T) is equal to the probability of the disjunction of the initiation conditions
of CE = true before T , assuming that CE = true has not been ‘broken’ in the meantime.
This probability is calculated as follows:

P(holdsAt(CE = true, t))=P(∨∀ts<t(initiatedAt(CE = true, ts) ∧ (¬ broken(CE = true, ts , t))))
(5.8)

Therefore, multiple initiations of CE = true increase its probability. Moreover, if CE = true is
‘broken’ with probability pb, then the probability of CE = true becomes equal to the product
of the probability of the disjunction of the initiations and 1−pb (see expression (5.8)). The
higher the probability pb, the more significant the decrease in the probability of CE = true.
Consecutive terminations decrease further the probability of CE = true.

Figure 5.1 illustrates the inference mechanism of Prob-EC when the task is to compute
the probability of the moving CE. In this example, moving is initiated at time-point 1 , while
no other initiations/terminations of moving take place until time-point 21 . Then, moving is
being initiated repeatedly until time-point 41 . From then on, we have consecutive termi-

P. Mantenoglou 116

Reasoning over Complex Temporal Specifications and Noisy Data Streams

1 2 21 41

sarah begins

walking with

mike

sarah walks with

mike again

sarah is active,

mike continues

walking

sarah walks away

from mike

M
ov

in
g

P
ro

b
ab

ili
ty

Moving

initiated

once

Moving persists

through inertia

Moving repeatedly

initiated

Moving repeatedly

terminated

Video Frames

0.8

0.32

Figure 5.1: Probabilistic activity recognition with Prob-EC (after [Skarlatidis et al., 2015a]).

nations of moving until the end of the video. The probability of the CE increases (resp. de-
creases) after each initiation (termination), while its probability does not change as long as
no initiations/terminations occur. The increase/decrease of the probability is proportional
to the probability values of the corresponding input events. For instance, the probability
of moving at time-point 22 is equal to the probability of the disjunction of the initiations of
the CE at time-points 1 and 21 , which is calculated as follows:

P(holds22)=P(init1 ∨ init21)=P(init1) + P(init21)− P(init1 ∧ init21)

= 0 .32 + 0 .1 − 0 .32 × 0 .1 = 0 .388
(5.9)

where holdst and initt are shorthands for holdsAt(moving(mike, sarah)= true, t) and
initiatedAt(moving(mike, sarah)= true, t), respectively, and the probabilities that both peo-
ple are walking close to each other, with a similar orientation at time-points 1 and 21 are
0 .32 and 0 .1 , respectively.

Prob-EC incorporates the law of inertia into the probabilistic framework of ProbLog. This
way, we can express the persistence of the probability of a CE, as well as the effects of
further initiations/terminations of the CE on its probability of occurrence over time. More-
over, the use of Prob-EC allows for several efficiency optimisations. For instance, in
order to monitor the probability of holdsAt(CE = true,T) as time progress, we can sim-
ply keep in memory the probability that the CE holds at the most recent time-point of
the stream, and update this probability as new CE initiations/terminations appears in the
stream, without sacrificing correctness. This method avoids the re-computation of the
initiations/terminations of the CE at previous time-points, and thus is suitable for stream
reasoning. However, Prob-EC performs point-based reasoning, i.e., it derives the prob-
ability that a CE holds at each point in time, which has proven to be less accurate than
interval-based reasoning [Artikis et al., 2021]. Next, we describe an algorithm for proba-
bilistic interval-based CE recognition.

117 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition

PIEC Recognition

Figure 5.2: Probabilistic recognition over noisy data streams. The solid black line rep-
resents instantaneous CE probabilities, as computed by Prob-EC, while the dotted line
designates the chosen threshold T for recognition. The outcome of Prob-EC, given this
threshold value, is presented by the green straight lines. The red line expresses the recog-
nition of PIEC.

5.3 Probabilistic Interval-based Event Calculus

The output of Prob-EC is a sequence of ‘p :: holdsAt(CE = true, T)’ indications which de-
note the evolution of the probability p of CE across time T . Some of these indications may
be the result of a sensor’s (temporary) malfunction. As an example, Figure 5.2 displays
the probability of a CE as time progresses. Notice that there is an abrupt probability drop
between the two peaks; in this example, the drop is the result of a sensor’s malfunction.
Prob-EC predicts that the target CE has a low probability of occurrence during this time
period. In order to make sense of such indications, we employ a threshold that allows us to
distinguish between positive and negative CE instances. In the example of Figure 5.2, the
threshold is equal to 0 .7 , and the recognition of Prob-EC, i.e., the time-points at which the
CE holds with a probability greater than the threshold, is depicted in the form of intervals
with the green straight lines. Since, during the sensor’s malfunction, Prob-EC computes
probability values lower than the threshold for the CE, there is a gap in the recognition
of Prob-EC. All time-points in this gap constitute false negatives, i.e., the CE took place
during that gap but was not detected.

To address such issues, i.e., abrupt probability fluctuations which do not adhere to reality,
the Probabilistic Interval-based Event Calculus (PIEC) [Artikis et al., 2021] consumes the
output of such a point-based recognition, in order to compute the ‘probabilistic maximal
intervals’ of a CE, i.e., the maximal intervals during which a CE is said to take place,
with a probability above a given threshold. This way, PIEC is robust to short-term system
failures. Below, we define the probability of an interval and probabilistic maximal intervals
following [Artikis et al., 2021], and then present the way PIEC detects such intervals.

Definition 20: The probability of interval ICE =[s , e] of a CE, with length(ICE)= e−s+1

P. Mantenoglou 118

Reasoning over Complex Temporal Specifications and Noisy Data Streams

time-points, is

P(ICE)=

∑e
t = s P(holdsAt(CE = true, t))

length(ICE)
,

where P(holdsAt(CE = true, t)) is the probability of occurrence of the CE at time-point t .

In other words, the probability of an interval of a CE is equal to the average of the in-
stantaneous CE probabilities at the time-points that the interval contains. Note that the
instantaneous CE probabilities, i.e., P(holdsAt(CE = true, t)), are not independent, since
the computation of holdsAt is based on the common-sense law of inertia (see Section 5.2).
Computing the average instantaneous probability allows us to smooth out abrupt probabil-
ity drops caused by sensor malfunction, such as that presented in Figure 5.2. In contrast,
interval probability definitions that employ instantaneous probability multiplication are sen-
sitive to abrupt probability drops.

Definition 21: A probabilistic maximal interval ICE =[s , e] of a CE is an interval such
that, given some threshold T ∈ [0 , 1], P(ICE) ≥ T , and there is no other interval I ′CE such
that P(I ′CE) ≥ T and ICE is a sub-interval of I ′CE .

Probabilistic maximal intervals (PMIs) may be overlapping. To choose an interval among
overlapping PMIs of the same CE, PIEC computes the credibility of each such PMI [Artikis
et al., 2021].

By computing PMIs, PIEC addresses the problems of point-based recognition in the pres-
ence of noisy instantaneous CE probability fluctuations, and in the common case of non-
abrupt probability change. See [Artikis et al., 2021] for an empirical analysis supporting
these claims. As an example, Figure 5.2 shows PIEC operating on top of the probability
values computed by Prob-EC. The PMI of PIEC spans over the region of noisy abrupt
probability decay, leading to more robust recognition as compared to Prob-EC.

Given a dataset of n instantaneous CE probabilities In[1 ..n] and a threshold T , PIEC
infers all PMIs of the CE in linear time, by translating the problem of PMI computation
to the problem of ‘maximal non-negative sum interval computation’ [Allison, 2003]. To
calculate the PMIs, PIEC constructs:

• The L[1 ..n] list containing each element of In minus the given threshold T , i.e.,

∀ i ∈ [1 , n],L[i] = In[i]−T (5.10)

It follows that:

e∑
i = s

L[i] ≥ 0
Eq .(5 .10)⇐=====⇒
Def .20

P(ICE =[s , e]) ≥ T (5.11)

Expression (5.11) states that the probability of an interval ICE is above the given
threshold T iff the sum of the L values of all the time-points i that ICE contains is
non-negative.

119 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.2: PIEC with threshold T = 0 .5 (after [Artikis et al., 2021]).

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

• The prefix [1 ..n] list containing the cumulative or prefix sums of list L, i.e.,

∀ i ∈ [1 , n], prefix [i] =
i∑

j = 1

L[j] (5.12)

• The dp[1 ..n] list, where

∀ i ∈ [1 , n], dp[i] = max
i≤j≤n

(prefix [j]) (5.13)

The elements of the dp list are calculated by traversing the prefix list in reverse order.

Table 5.2 presents an example dataset In[1 ..10] of instantaneous CE probabilities, along
with the lists calculated by PIEC for a threshold value T = 0 .5 . In this example, there are
three PMIs: [1 , 5], [2 , 6] and [8 , 10].

PIEC additionally uses the following variable:

(5.14)dprange[s , e] =

{
dp[e]−prefix [s−1] if s > 1
dp[e] if s = 1

Starting from Eq. (5.14), and substituting prefix and dp with their respective definitions
(Eq. (5.12) and (5.13)), we derive that dprange[s , e] expresses the maximum sum that
may be achieved by adding the elements of list L from s to some e∗ ≥ e, i.e.:

dprange[s , e] = max
e≤e∗≤n

(L[s] + · · ·+ L[e∗]). (5.15)

The following equivalence is a corollary of Eq. (5.15):

dprange[s , e] ≥ 0 ⇔ ∃e∗ : e∗ ≥ e,
∑

s≤i≤e∗

L[i] ≥ 0 . (5.16)

which, according to equivalence (5.11), entails that:

dprange[s , e] ≥ 0 ⇔ ∃e∗ : e∗ ≥ e,P([s , e∗]) ≥ T . (5.17)

This means that [s , e∗] is a potential PMI.

P. Mantenoglou 120

Reasoning over Complex Temporal Specifications and Noisy Data Streams

PIEC processes a dataset of instantaneous CE probabilities sequentially using two point-
ers directed towards the starting point s and the ending point e of a potential PMI. Accord-
ing to expression (5.17), if dprange[s , e] is non-negative, then [s , e∗] is a potential PMI, for
some e∗ > e. In that case, PIEC increments the e pointer until dprange becomes negative.
When dprange becomes negative, PIEC produces the following PMI: [s , e−1]. Once a PMI
is computed, PIEC increments the s pointer and re-calculates dprange. By repeating this
process, PIEC computes all PMIs of a given dataset.

Example 24: Consider the dataset presented in Table 5.2 and a threshold T = 0 .5 .
Initially, s = 1 , e = 1 and PIEC calculates that dprange[1 , 1] = 0 .1 ≥ 0 . Then, PIEC in-
crements e as long as dprange remains non-negative. This holds until e = 6 when
dprange[1 , 6] =−0 .4 . PIEC produces the PMI [1 , 5] and increments s. Afterwards, PIEC
calculates that dprange[2 , 6] = 0 .1 and thus increments e, i.e., e = 7 , while s remains equal
to 2 . PIEC proceeds by re-calculating dprange, i.e., dprange[2 , 7] =−0 .4 < 0 , and then
produces the PMI [2 , 6] and increments s, i.e., s = 3 . The condition dprange[s , 7] < 0
holds ∀s ∈ [3 , 7]. Hence, PIEC increments s until s = 8 when dprange[8 , 7] = 0 . Note that
∀t , dprange[t + 1 , t] = dp[t]− prefix [t] ≥ 0 ; see the definition of dp (Eq. (5.13)). Hence,
PIEC avoids such erroneous pointer values, i.e., s > e, by incrementing e. Here, e in-
creases as long as dprange[8 , e] ≥ 0 . This holds for every subsequent time-point of the
dataset. Finally, PIEC produces the PMI [8 , 10] as P([8 , 10]) ≥ T and there is no subse-
quent time-point to add. Summarising, PIEC computes all PMIs of the dataset In[1 ..10].
□

As already mentioned, the interval-based probabilistic CE recognition of PIEC has proven
to be more accurate than the point-based recognition of Prob-EC. However, PIEC is not
designed for applications where input data arrive to the system incrementally. For each
new instantaneous probability in the input stream, PIEC would have reason over the entire
dataset of instantaneous probabilities and compute the PMIs of the dataset from scratch,
in order to ensure correct PMI computation. As a result, PIEC is not suitable for stream
reasoning. To address this issue, we propose oPIEC, i.e., an extension of PIEC that oper-
ates online, as well as two bounded-memory extensions of oPIEC, in order to ensure that
the size of the working memory remains constant as the stream progresses. Before mov-
ing to oPIEC and its extensions, we provide a literature review on probabilistic composite
event recognition.

5.4 Literature Review

Composite event recognition (CER) involves the identification of high-level, composite
events (CE)s of interest based on streams of simple, derived events (SDE)s [Giatrakos
et al., 2020]. SDE streams may include various types of noise. For instance, in activity
recognition, erroneous SDE indications are often the result of failures in the object tracker
or object occlusion [Khan et al., 2019; Singh and Vishwakarma, 2019], while maritime data
streams may include empty fields and erroneous field values [Bereta et al., 2021]. To ad-
dress these issues, various frameworks have been proposed for probabilistic CER [Alevi-

121 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.3: A comparison of probabilistic CER frameworks in terms of the underlying formal-
ism, temporal model, support for background knowledge, uncertainty model and learning
capabilities. B.K.: Background Knowledge, M.L.: Machine Learning.

Approach Formalism Temporal Model B.K. Uncertainty M.L.
Data Pattern Model

Prob-EC Logic programming Points, Explicit,
Event Calculus. ✓ ✓ Probabilistic logic programming

PIEC Logic programming Intervals, Explicit,
Event Calculus. ✓ ✓ Probabilistic logic programming

SEC Logic programming Points, Explicit,
Event Calculus. ✓ ✓ ✓ Probabilistic logic programming

DeepProbCEP Logic programming Points, Explicit. ✓ ✓ Neural probabilistic logic programming ✓

[Apriceno et al.,
2021]

Logic programming Intervals, Explicit. ✓ ✓ Neural probabilistic logic programming ✓

CPT-L Disjunctive logic
programming Points, Implicit. ✓ ✓ Probabilistic logic programming ✓

Qualitative time
CP-Logic

Disjunctive logic
programming Intervals, Explicit. ✓ ✓ Dynamic Bayesian Networks

WOLED Answer set
programming

Points, Explicit,
Event Calculus. ✓ ✓ Derivation of answer set that maximises

the sum of weights of satisfied rules ✓

PEC

Action logic
translated to
answer set
programming

Points, Implicit,
Event Calculus. ✓ ✓ Multiplication of independent probabilistic

choices

OnPad First-order logic Intervals, Explicit. ✓ Probabilities assigned to predicates for
object equality

MLN-EC First-order logic Points, Explicit,
Event Calculus. ✓ ✓ Markov Logic Networks ✓

MLN-Allen First-order logic Intervals, Explicit,
Allen’s Algebra. ✓ ✓ ✓ Markov Logic Networks

OSLα First-order logic Points, Explicit,
Event Calculus. ✓ ✓ Markov Logic Networks ✓

[Apriceno et al.,
2022]

First-order logic Intervals, Explicit. ✓ ✓ Mixed integer linear programming ✓

PEL Event logic Intervals, Implicit,
Allen’s Algebra. ✓ ✓ Weighted event logic formulas

CEP2U TESLA Points, Explicit. ✓ ✓ Bayesian Networks

Partial-State
MTL

Metric temporal
logic Points, Implicit. ✓ Multiplication of state transitions

probabilities

ProbSTL Signal temporal
logic Points, Implicit. ✓ Bayesian filtering

Neuroplex
Finite state

machines and logic
programming

Points, Explicit. ✓ ✓ Probabilistic logic programming
approximated with a deep learning model ✓

SASE++ Non-deterministic
finite automata Points, Implicit. ✓ Probability distribution on time attribute

[Sugiura and
Ishikawa, 2020]

Deterministic finite
automata Intervals, Implicit. ✓ Multiplication of probabilistic transition

matrices

Data Pattern Model

Approach Formalism Temporal Model B.K. Uncertainty M.L.

P. Mantenoglou 122

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.4: A comparison of probabilistic CER frameworks in terms of the time complexity,
empirical efficiency, predictive accuracy and code availability. C.A.: Code Availability.

Approach Complexity Efficiency Accuracy C.A.

Prob-EC

Linear to the number of
time-points in the dataset and
the number of rules and body
literals in the event description.

Throughput of about 10
events/second in a human
activity recognition task.

Has proven more accurate
than its crisp variant when
CEs are frequent and their
definitions include few
probabilistic conjuncts.

✓

PIEC Linear to the number of
time-points in the dataset.

Processes a stream of 8K
probabilities for the

‘rendez-vous’ activity (more
than 2 hours of data) in less

than 3 minutes.

Often improves upon
point-based recognition.
Accuracy depends on

threshold.

✓

SEC Not reported. Not reported. Not reported. ✓

DeepProbCEP Not reported.

Slower training and
reasoning times than

Neuroplex by more than an
order of magnitude.

Outperforms state-of-the-art
neural approaches when
trained using sparse data.

✓

[Apriceno et al.,
2021]

Not reported. Not reported. Improves upon fully neural
benchmark.

CPT-L

Program transformed into a
BDD in polynomial time.

Probabilistic inference is linear
to the size of the BDD. The size
of the BDD may be exponential
to the size of the program.

Inference over 200K nodes
in the ground network in
approx. 20 seconds.

Approx. 84% in the most
challenging domain of their

experiments.

Qualitative time
CP-Logic Not reported. Not reported. Not reported.

WOLED Reduction to weighted MaxSat,
which is NP-complete.

MAP inference over batches
including approx. 30K

ground atoms in less than 1
second.

Induced patterns for
‘moving’ and ‘meeting’ yield
f1-scores of 82% and 89%,

respectively.

✓

PEC Not reported. Processes approx. 4K
traces/sec.

Approximate solution
computes probabilities
within 95% confidence
intervals w.r.t. exact

probabilities by sampling
100 worlds.

✓

OnPad

O(max (|O |, |l |, |pl |)|af |), where
is |O | is the number of objects
in a video, |l | is the number of
ground boolean atoms, |pl | is
the number of probabilistic
ground atoms and |af | is the

number of atoms in the formula
of the activity of interest.

Processes approx. 4 video
frames per second.

Divergence from human
reviewer annotation ranges

from 9% to 20%.

Approach Complexity Efficiency Accuracy C.A.

123 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.4: Continued.

Approach Complexity Efficiency Accuracy C.A.

MLN-EC

Marginal inference with the
approximate sampling
algorithm MC-SAT.

Approximate MAP inference
through a transformation

into Integer Linear
Programming.

Marginal and MAP inference
in less than 5 minutes.

Increased precision, slight
decrease in recall

w.r.t. deterministic solution.
✓

MLN-Allen Not reported. Not reported. F1-score > 65%, even for
small window sizes.

OSLα Not reported.
Training time for ‘meeting’
CE approx. 2 hours. Uses
MLN-EC for inference.

Accuracy of learned CE
definitions is similar and
often better than the
accuracy of manually

curated rules.

✓

[Apriceno et al.,
2022]

Not reported. Not reported. Improves upon fully neural
benchmark.

PEL

Transforms the knowledge
base in CNF in time linear to

its size and applies an
approximate stochastic local
search approach for MAP

inference.

Not reported. On average, >75%.

CEP2U Not reported.
<10ms/event after

introducing data and pattern
uncertainty.

>80% in all of their
experiements.

Partial-State MTL Not reported.

<3 minutes for formulas
corresponding to automata

with up to 15K states.
Approx. 1.5 minutes with
approximate reasoning.

Accuracy of formula
probability approximation
w.r.t. exact solution is

controlled by a user-defined
parameter.

✓

ProbSTL

Proportional to the length of
the formula defining the

target composite event and
the complexity of the

domain-specific functions
mapping stochastic signals

to real values.

Not reported.

Probabilistic approach
improves upon the recall
metric, which is crucial for
safety formulas where no

instances should be missed.

Neuroplex Not reported. Not reported.
Outperforms corresponding
neural solutions without

human knowledge injected.
✓

SASE++
Exponential to window size
if Kleene closure is included

in the language.

Throughput 300K–7M
events/sec or 13.62

events/second/node w.r.t. 6
queries.

Not reported.

[Sugiura and
Ishikawa, 2020]

O(
√
wn2+n3), where w is

the window size and n is the
number of states in the
deterministic finite

automaton representation of
a pattern.

Throughput of >1K
events/sec for a
deterministic finite

automaton with <10 states.

Removing states with
probability <0.0001 to
improve efficiency

introduces an error of
approx. 7%.

Approach Complexity Efficiency Accuracy C.A.

P. Mantenoglou 124

Reasoning over Complex Temporal Specifications and Noisy Data Streams

zos et al., 2017; Artikis et al., 2021]. Tables 5.3 and 5.4 compare probabilistic CER frame-
works, extending the discussion provided in [Alevizos et al., 2017]. Table 5.3 compares
state-of-the-art frameworks in terms of the underlying formalism, temporal model, support
for background knowledge, uncertainty model and learning capabilities. Table 5.4 reports
the time complexity, empirical efficiency and predictive accuracy of these frameworks, as
well as their code availability. In what follows, we review probabilistic CER systems along
the dimensions-columns of Tables 5.3 and 5.4.

Expressive Power
Probabilistic CER frameworks are commonly automata-based or logic-based [Alevi-
zos et al., 2017]. Automata-based methods, which often extend the CER engine
SASE+ [Agrawal et al., 2008], have been designed to handle uncertainty in event sym-
bols and their time-stamps [Zhang et al., 2013; Zhang et al., 2014]. The approach based
on deterministic finite automata of Sugiura and Ishikawa [2019; 2020] employs adaptive
sliding windows and optimisation techniques. Automata-based methods lack the explicit
representation of time and the expressive power of logic-based frameworks, such as the
Event Calculus, making the modelling of CE patterns with complex temporal constraints
and background knowledge cumbersome, and often impossible.

Logic-based approaches are typically based on (subsets of) first-order logic. Several prob-
abilistic Event Calculus dialects, such as Prob-EC and SEC [McAreavey et al., 2017],
model CE definitions through logic programming rules. Other approaches employ exten-
sions of linear temporal logic [de Leng and Heintz, 2019; Tiger and Heintz, 2020], action
logics [D’Asaro et al., 2017] or the ‘event logic’ [Siskind, 2001; Selman et al., 2011]. These
approaches model state machines where time is specified implicitly as the index of a state
in an execution sequence. Metric Temporal Logic (MTL) augments the expressive power
of state machines by supporting temporal operators whose scope can be constrained by
user-defined temporal intervals. de Leng and Heintz [2019] presented Partial-State MTL,
an incremental reasoning algorithm for computing formula satisfaction under uncertainty
in MTL. ProbSTL [Tiger and Heintz, 2020] employs an extension of MTL with dense-time
semantics where logical statements represent continuous time signals. Because of their
point-based, implicit time model, these approaches are designed for path checking, i.e.,
finding whether a possible state evaluation is a model for a given query, and do not support
durative CE computation. Probabilistic CER frameworks that are based on logic program-
ming, such as Prob-EC, avoid the aforementioned representation issues.

There are additional point-based frameworks in the literature. Skarlatidis et al. [2015] pro-
posedMLN-EC, i.e., an Event Calculus expressed inMarkov Logic and implemented using
Markov Logic Networks (MLNs). CEP2U [Cugola et al., 2015] extends the TESLA [Cu-
gola and Margara, 2010] event specification language with probabilistic modelling. CPT-
L [Thon et al., 2011] is a temporal extension of Causal-Probabilistic Logic (CP-Logic) [Ven-
nekens et al., 2009] using Markov processes. SEC and PEC [D’Asaro et al., 2017] are
probabilistic Event Calculus dialects based on probabilistic logic programming and an ac-
tion logic, respectively. In all of these approaches, CE inference is performed at each
individual time-point (e.g., video frame). It has been shown that point-based approaches
are often insufficient for CER under uncertainty [Artikis et al., 2021]. Noisy instantaneous

125 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

CE probability fluctuations, and non-abrupt probability change affect the performance of
point-based recognition. Therefore, it is preferable to employ interval-based techniques
for probabilistic CER.

Towards this, Brendel et al. [2011] integrated the interval-based Probabilistic Event Logic
(PEL) into an activity recognition framework for detecting CEs from a set of noisy, dura-
tive SDEs. MLN-Allen [Morariu and Davis, 2011] is an interval-based activity recognition
framework that avoids the enumeration of all possible intervals of a CE. In [van der Heij-
den and Lucas, 2013], CP-logic was combined with Allen’s interval relations [Allen, 1983]
to perform interval-based CER under uncertainty. Contrary to PIEC, these frameworks
cannot compute CE intervals with a single pass over the input stream.

Some frameworks support CE patterns that rely on background knowledge. For example,
in the maritime domain, it is often necessary to retrieve the type of a vessel and its di-
mensions, or the regulations governing vessel behaviour in a designated area. Table 5.3
shows that the automata-based frameworks, i.e., SASE++ and the work of Sugiura and
Ishikawa, do not support background knowledge, while most logic-based frameworks do.
Prob-EC and PIEC are based on logic programming, and thus have inherent support for
background knowledge.

A probabilistic CER framework may express data uncertainty in the input SDEs, and/or
pattern uncertainty, i.e., uncertainty in the definitions of CEs. Moreover, a model is used to
handle the uncertainty of SDE occurrences and/or CE definitions in reasoning. Table 5.3
compares the probabilistic CER frameworks along these dimensions. Prob-EC supports
data uncertainty as SDEs are associated with probability values. Moreover, Prob-EC, like
all probabilistic logic programming frameworks displayed in Table 5.3, is based on the dis-
tribution semantics [Sato, 1995]. PEL models uncertainty by defining CEs as weighted
event logic formulas [Brendel et al., 2011]. OnPad supports probability annotations only
on equality predicates and employs an ad-hoc algorithm to propagate their uncertainty to
its output [Albanese et al., 2010]. Some state transition systems propagate uncertainty
by multiplying the probabilities of all transitions in some sequence [Sugiura and Ishikawa,
2019; Tiger and Heintz, 2020], while CEP2U and Qualitative time CP-Logic [van der Heij-
den and Lucas, 2013] employ Bayesian Networks. PEC derives the instantaneous prob-
ability of a CE by computing all possible worlds in which the CE holds and summing up
their probabilities. As discussed in Section 5.1, this approach is not tractable, and thus
not suitable for probabilistic CER.

Learning
Several probabilistic CER frameworks support learning; see the last column of Table 5.3.
WOLED combines inductive logic programming techniques with answer set program-
ming (ASP) in order to learn the structure and the weights of probabilistic Event Calculus
rules [Katzouris et al., 2023]. For example, WOLED was able to learn a more accurate
definition for ‘meeting’ than the related learner ILASP [Law, 2018; Law, 2023], while being
more efficient [Katzouris et al., 2023]. OSLα is a supervised framework for learning the
structure of weighted Event Calculus rules in Markov Logic [Michelioudakis et al., 2016].
OSLα has been employed in a semi-supervised setting using an online supervision com-

P. Mantenoglou 126

Reasoning over Complex Temporal Specifications and Noisy Data Streams

pletion method adapted to first-order logic [Michelioudakis et al., 2019]. In this setting,
OSLα was able to learn accurate definitions for the ‘moving’ and ‘meeting’ CEs, even in
the presence of partially labelled data. Learning CE definitions is orthogonal to our work,
as we focus on efficient CE recognition over probabilistic event streams. The CE defini-
tions we employ may be learned or manually constructed.

Neuro-symbolic frameworks for CER typically employ a neural layer for deriving SDEs
from multimedia data and a logic layer for defining patterns of CEs. Neuroplex [Xing
et al., 2020] is a neuro-symbolic CER framework that translates logical rules express-
ing CE definitions into a ‘neural reasoning layer’, resulting in a fully differentiable neural
architecture that may be trained end-to-end using CE annotations. DeepProbCEP [Vil-
amala et al., 2023] is a neuro-symbolic CER framework whose logic layer is based in
DeepProbLog [Manhaeve et al., 2021], incorporating an Event Calculus dialect inspired
by Prob-EC. The use of DeepProbLog enables training with CE labels without translating
CE definitions into a neural representation. The probabilistic Event Calculus implementa-
tion of DeepProbCEP, however, is a bottleneck for the training and reasoning efficiency
of the system, suggesting the need for further optimisations. Moreover, DeepProbCEP
and Neuroplex are point-based, and thus exhibit the drawbacks of point-based recogni-
tion [Artikis et al., 2021].

Apriceno et al. [2021] proposed a neuro-symbolic framework based on DeepProbLog
which leverages background knowledge about the SDEs and the visual objects in CE
patterns. In a more recent work, Apriceno et al. [2022] employed a mixed integer linear
programming formulation instead of DeepProbLog. SDE durations were used as soft con-
straints in order to find the most probable sequence of SDEs. The logic layers of [Apriceno
et al., 2021; Apriceno et al., 2022] employ an Event Calculus dialect where SDEs and CEs
are durative. Contrary to our Prob-EC, this dialect is very minimal as it contains only a
durative incarnation of the happensAt predicate. Moreover, CE recognition is limited to one
CE per video clip, while the SDEs generated by the neural network are mutually exclusive,
i.e., concurrent or overlapping SDEs are not considered.

Performance
Table 5.4 reports the time complexity, empirical efficiency and predictive accuracy of each
system. Note that some frameworks do not provide a complexity analysis and/or empirical
results. Futhermore, we identify the systems with available code. Regarding time com-
plexity, OnPad computes the probability that a durative CE takes place, given a possibly
incomplete video sequence, with a cost exponential to the length of the formula defin-
ing the CE. PEL resorts to approximate inference techniques to mitigate its exponential
worst-case cost for the task of durative CE computation. Sugiura and Ishikawa translate
the definition of the target CE into a deterministic finite automaton and use an algorithm
with cost O(

√
wn2 + n3), where w is the window size and n is the number of states in

the automaton. Prob-EC computes CE probabilities incrementally, maintaining in mem-
ory only the probabilities of CEs at the previous time step. Subsequently, PIEC performs
one pass over the derived instantaneous CE probabilities and computes PMIs with a cost
that is linear to the number of input probabilities.

127 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 5.4 describes the best reported empirical results of each system in terms of effi-
ciency. OnPad processed approx. 4 video frames per second, indicating the need for
further optimisations for supporting real-time processing. Sugiura and Ishikawa showed
that their approach can process thousands of events per second, when the size of the
automaton expressing the target CE pattern includes less than 10 states.

Table 5.4 also reports empirical results on the predictive accuracy of probabilistic CER
frameworks. For OnPad, PEL and MLN-Allen, the accuracy of CE recognition was eval-
uated against the CE annotations provided by experts. For the approach of Sugiura and
Ishikawa, which supports approximate reasoning, predictive accuracy was reported as a
comparison against the CE recognition derived by the corresponding exact algorithm. In
Chapter 7, we present an empirical evaluation of our framework, demonstrating that the
predictive accuracy of reasoning in an online setting using our framework is comparable
with the accuracy of batch reasoning over the entire dataset. Moreover, we demonstrate
that our framework outperforms point-based recognition, using ground truth offered by
experts.

The last column of Table 5.4 marks the systems with publicly available code. The systems
we built upon to construct oPIEC, i.e., Prob-EC and PIEC, as well as the variants of oPIEC
that we propose, are publicly available3.

3https://github.com/periklismant/opiec

P. Mantenoglou 128

https://github.com/periklismant/opiec

Reasoning over Complex Temporal Specifications and Noisy Data Streams

6. REASONING OVER NOISY DATA STREAMS

We propose oPIEC, an extension of the probabilistic interval-based composite event
recognition framework PIEC for handling noisy data streams. Section 6.1 describes
oPIEC, proves its correctness and outlines its complexity. Section 6.2 proposes two
bounded-memory versions of oPIEC, paving the way for high predictive accuracy in sce-
narios where memory is scarce. In Section 6.3, we summarise our contributions and
provide a discussion with respect to the state the of art.

6.1 Online Probabilistic Interval-based Event Calculus (oPIEC)

PIECwas designed to operate in a batchmode, as opposed to an online setting where data
stream into the recognition system. In the online setting, reasoning has to be performed
in windows/data batches and thus the predictive accuracy of PIEC may be compromised.
To address this issue, we present oPIEC, i.e., online Probabilistic Interval-based Event
Calculus, an extension of PIEC which operates on data batches In[i ..j], where i and j
are time-points with i ≤ j . oPIEC processes each incoming data batch In[i ..j] and then
discards it. Moreover, it identifies the minimal set of time-points that need to be cached in
memory in order to guarantee correct PMI computation. These time-points are cached in
the support set and express the starting points of potential PMIs, i.e., PMIs that may end
in the future.

Figure 3 presents the pipeline of online probabilistic CER. Prob-EC reasons over the
domain-independent Event Calculus axioms, the domain-dependent rules (e.g., defining
when two people are said to be moving together in activity recognition), and a probabilis-
tic data stream, in order to compute instantaneous CE probabilities. With the use of a
caching technique, Prob-EC may operate in an online mode [Skarlatidis et al., 2015a].
oPIEC consumes the instantaneous CE probabilities, as they stream out of Prob-EC, in
order to calculate PMIs.

Upon the arrival of a data batch In[i ..j], oPIEC computes the values of the L[i ..j],
prefix [i ..j], and dp[i ..j] lists. To allow for correct reasoning, the last prefix value of a batch
is transferred to the next one. Consequently, the prefix value of the first time-point of a
batch, prefix [i], is set to prefix [i−1]+L[i]. (For the first batch, prefix [1] =L[1].) This way,
the computation of the values of prefix [i ..j] and dp[i ..j] is not affected by the absence of
the data prior to i . Subsequently, oPIEC performs the following steps:

1. It computes all PMIs starting from some time-point in the support set or the data
batch In[i ..j] and ending in In[i ..j].

2. It identifies the minimal set of time-points of the data batch In[i ..j] that should be
cached in the support set.

In what follows, we first present Step 2 and then move to Step 1.

129 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

SDE Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)
0 .85 :: happensAt(inactive(id1),T2)
0 .70 :: happensAt(active(id5),T2)
0 .45 :: happensAt(walking(id0),T3)

...
Point-based CE Stream

0 .73 :: holdsAt(moving(id0 , id1),T1)
0 .83 :: holdsAt(meeting(id1 , id5),T2)
0 .34 :: holdsAt(moving(id0 , id5),T2)
0 .56 :: holdsAt(moving(id0 , id1),T2)
0 .92 :: holdsAt(meeting(id1 , id5),T3)
0 .44 :: holdsAt(moving(id0 , id1),T3)

...

oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1), (T1 ,T2))
0 .88 :: holdsFor(meeting(id1 , id5), (T3 ,T6))
0 .66 :: holdsFor(moving(id0 , id5), (T6 ,T7))
0 .89 :: holdsFor(moving(id0 , id1), (T8 ,T12))
0 .67 :: holdsFor(meeting(id1 , id5), (T14 ,T18))

...

Figure 6.1: Online probabilistic CER. First, Prob-EC, equipped with the Event Calculus
axioms (bottom left), and application-specific fluent initiation and termination rules (top
left), reasons over a probabilistic data stream (top right) to derive the instantaneous prob-
abilities of the target CEs (‘Point-based CE stream’ at the center of the picture). Second,
oPIEC processes this stream of instantaneous CE probabilities to compute the probabilis-
tic maximal intervals of the target CEs (bottom right).

6.1.1 Support Set

The support set comprises a set of tuples of the form (t , prev_prefix [t]), where t is a time-
point and prev_prefix [t] expresses t ’s previous prefix value, which is defined as follows:

prev_prefix [t] =
{

prefix [t−1] if t > 1
0 if t = 1

(6.1)

With the use of prev_prefix [t], oPIEC is able to compute dprange[t , t ′] for any future time-
point t ′, and thus determine whether t is the starting point of a PMI. For example, the
arrival of a time-point t ′ > t for which dp[t ′] ≥ prev_prefix [t] implies that dprange[t , t ′] ≥ 0 ,
because

dp[t ′] ≥ prev_prefix [t] Eq .(6 .1)
=====⇒ dp[t ′] ≥ prefix [t−1] Eq .(5 .14)

======⇒ dprange[t , t ′] ≥ 0

Hence, t is the starting point of a PMI that may end either at t ′ or at a later time-point (see
expression (5.17)).

Algorithm 10 identifies the time-points of a data batch In[i ..j] that should be cached
in the support set. For each time-point t ∈ [i , j], oPIEC checks whether prev_prefix [t]

P. Mantenoglou 130

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 10 support_set_update(min_prev_prefix , support_set)
1: for t ∈ [i , j] do
2: if prev_prefix [t] < min_prev_prefix then
3: support_set .append((t , prev_prefix [t]))
4: min_prev_prefix ← prev_prefix [t]
return (min_prev_prefix , support_set)

is less than the min_prev_prefix , i.e., the lowest prev_prefix value found so far. If
prev_prefix [t] is less than min_prev_prefix , then (t , prev_prefix [t]) is added to the support
set and min_prev_prefix is set to prev_prefix [t]. Finally, the updated support set and the
min_prev_prefix value are passed to the next batch to ensure correct PMI computation.
Example 25 illustrates this functionality of oPIEC.

Example 25: Consider the dataset in Table 5.2 arriving in three batches, In[1 ..4], In[5 ..8]
and In[9 , 10]. The values of the prefix list are shown in Table 5.2—recall that oPIEC
generates the same prefix list whether processing data batches or seeing all data in a
single batch. oPIEC processes every time-point of each batch sequentially. For t = 1 ,
prev_prefix [1] = 0 is less than min_prev_prefix , since, initially, min_prev_prefix=+∞.
Thus, the tuple (1 , prev_prefix [1] = 0) is added to the support set and min_prev_prefix
is set to 0 . Next, t = 2 and prev_prefix [2] =−0 .5 , which is less than min_prev_prefix .
Therefore, oPIEC caches the tuple (2 ,−0 .5) and updates min_prev_prefix . The re-
maining time-points of the first batch are not added to the support set as the condition
prev_prefix <min_prev_prefix is not satisfied by their prev_prefix value. By processing
the remaining batches in a similar way, the support set evolves as follows:

• [(1 , 0), (2 ,−0 .5)]; computed after processing In[1 ..4].
• [(1 , 0), (2 ,−0 .5), (8 ,−0 .9)]; computed after processing In[5 ..8].
• [(1 , 0), (2 ,−0 .5), (8 ,−0 .9), (9 ,−1 .4)]; computed after processing In[9 ..10]. ♢

This example illustrates that oPIEC augments the support set with the time-points having
the smallest prev_prefix value, regarding the data seen so far, and no other time-points.

Proposition 11: If [ts , te] is a PMI, then ts satisfies the following condition:

∀tprev ∈ [1 , ts), prev_prefix [tprev] > prev_prefix [ts] (6.2)

♦

Proof Sketch. We assume that ∃t ′s : t ′s < ts , prev_prefix [t ′s] ≤ prev_prefix [ts] and follow a
proof by contradiction. We show that the above expression entails that dprange[t ′s , te] ≥ 0 ,
which, according to corollary (5.16), implies that there is a PMI [t ′s , t ′e], where t ′e ≥ te . [ts , te]
is a sub-interval of [t ′s , t ′e]. This is a contradiction because [ts , te] is a PMI. Thus, ts must
satisfy condition (6.2). □

Proposition 12: oPIEC caches a time-point ts in the support set iff ts satisfies condition
(6.2). □

131 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Proof. oPIEC adds a time-point t to the support set iff the condition of the if state-
ment shown in line 2 of Algorithm 10 is satisfied. When this condition, prev_prefix [t] <
min_prev_prefix , is satisfied, the min_prev_prefix is set to prev_prefix [t]. Since Algorithm
10 handles every time-point in chronological order, in its i th iteration, min_prev_prefix will
be equal to the minimum prev_prefix value of the first i time-points. So, a time-point’s
prev_prefix value is less than the min_prev_prefix iff it satisfies condition (6.2).

According to Propositions 11 and 12, the starting point of a PMI has the smallest
prev_prefix value up to that point, and oPIEC caches exclusively the time-points which
have this property. As a result, oPIEC caches in the support set the minimal set of time-
points that guarantees correct PMI computation, irrespective of the data that may arrive
in the future.

Note that a time-point t may satisfy condition (6.2) and not be the starting point of a PMI
in a given dataset. For instance, see time-point 9 in Example 25. These time-points must
also be cached in the support set, because they may become the starting point of a PMI
in the future. Consider again Example 25 and assume that a fourth batch arrives with
In[11] = 0 . In this case, we have a new PMI: [9 , 11].

6.1.2 Interval Computation

We now describe how oPIEC computes PMIs using the support set. Algorithm 11 outlines
this process. oPIEC uses a pointer ptss to traverse the support set; moreover, oPIEC
uses two pointers to traverse the prefix and dp lists of the data batch In[i ..j], and indicate
the starting point s and ending point e of a potential PMI. Note that the elements of all
lists are temporally sorted. The task of Algorithm 11 is to compute all PMIs which end in
data batch In[i ..j], starting from either a time-point in the support set (lines 3–8) or in the
current batch In[i ..j] (lines 9–15). While processing time-points in the support set, oPIEC
calculates dprange for the elements which correspond to the ptss and e pointers. If the value
of dprange is non-negative, then there is a PMI starting at the examined element of the
support set and e is incremented in order to find the ending point of the PMI. Otherwise, if
the value of dprange is negative, then there is no PMI starting from the given element of the
support set. In this case, oPIEC checks whether the ending point of a PMI was identified
in the previous iteration, which is indicated by a Boolean flag variable. If this is the case,
the interval [support_set [ptss].timepoint , e−1] is added to the list of computed PMIs, where
support_set [ptss].timepoint expresses the time-point of the tuple in the support set indicated
by ptss . At this point, oPIEC increments ptss in order to check the next potential starting
point in the support set.

Once the support set has been processed, oPIEC computes PMIs starting in In[i ..j].
Again, dprange is computed and, depending on its value, the starting and ending points
of PMIs are selected, as explained above. Finally, if after processing In[i ..j] there is a
pending interval, i.e., an interval whose starting point has been computed but its ending
point may be found in future data, then, given the data seen so far, this interval is a PMI
which ends at the last time-point of In[i ..j], and thus is added to the output of oPIEC.

P. Mantenoglou 132

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 11 intervalComputation(i , j , prefix , dp, prev_prefix [i], support_set)
Input: Indices i and j indicating the starting and ending point of the current data batch,
lists prefix [i ..j] and dp[i ..j], prev_prefix [i], i.e., the last value of the prefix list of the previous
data batch, and the support set after processing the previous data batch.
Output: A temporally sorted list of PMIs, given the data up to the current data batch
In[i ..j].
1: s ← i , e ← i , ptss ← 1 , flag ← false
2: while s ≤ j and e ≤ j do
3: if ptss ≤ length(support_set) then ▷ look for starting points in the support set
4: dprange ← dp[e]−support_set [ptss].prev_prefix
5: if dprange ≥ 0 then flag ← true, e+=1
6: else
7: if flag == true then intervals .append((support_set [ptss].timepoint , e−1))
8: flag ← false, ptss+=1

9: else ▷ look for starting points in the current data batch
10: if s == i then dprange ← dp[e]−prev_prefix [i]
11: else dprange ← dp[e]− prefix [s−1]
12: if dprange ≥ 0 then flag ← true, e+=1
13: else
14: if s < e and flag == true then intervals .append((s , e−1))
15: flag ← false, s+=1

16: if flag == true and ptss ≤ length(support_set) then ▷ append pending interval
17: intervals .append((support_set [ptss].timepoint , e−1))
18: else if flag == true then intervals .append((s , e−1))
19: return intervals

Example 26:We complete Example 25 by presenting the interval computation process
for the same dataset arriving in batches In[1 ..4], In[5 ..8], and In[9 ..10]. Table 6.1 dis-
plays the contents of lists In, L, prefix , prev_prefix and dp for each data batch. The
first three lists are the same as in Example 25. Please recall that the consistency of
prefix in the presence of data batches is achieved by transferring its last element to the
next data batch. The last two lines of Table 6.1 present the elements added to the sup-
port set and the newly computed PMIs after processing each data batch. Upon the ar-
rival of the first batch In[1 ..4], the support set is empty. Therefore, Algorithm 11 only
considers intervals starting in In[1 ..4] and computes the interval [1 , 4], which is a PMI,
given the data seen so far. When the second batch In[5 ..8] arrives, the support set is
[(1 , 0), (2 ,−0 .5)] (see Example 25). Hence, Algorithm 11 initializes pointer ptss to 1 and
pointer e to 5 . Since dp[5] ≥ prev_prefix [1], the flag becomes true and e is incremented
(lines 4–5 of Algorithm 11). In the following iteration, dp[6] < prev_prefix [1] and thus Al-
gorithm 11 produces the PMI [1 , 5], which replaces the interval [1 , 4]. Next, ptss is set
to 2 . Because dp[6] > prev_prefix [2], Algorithm 11 decides that there is a PMI starting
at t = 2 . However, it fails to extend it in the following iteration. Therefore, Algorithm 11

133 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 6.1: oPIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
prev_prefix 0 −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −1 .4 −0 .9 −0 .9
support set
(new tuples) [(1 , 0), (2 ,−0 .5)] [(8 ,−0 .9)] [(9 ,−1 .4)]

PMIs
(ending in batch) [[1 , 4]] [[1 , 5], [2 , 6]] [[8 , 10]]

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

Figure 6.2: Probabilistic recognition over noisy data streams (continued from Figure 5.2).
The solid black straight line denotes the current data batch. The black crosses on top of
the horizontal axis denote the time-points stored in the support set, while the blue straight
line denotes the recognition of oPIEC, given the data seen so far.

produces the PMI [2 , 6] and terminates for this data batch, since dprange is negative for
all values of pointers s and e. When the third batch In[9 ..10] arrives, the support set is
[(1 , 0), (2 ,−0 .5), (8 ,−0 .9)]. Since dp[9] =−0 .9 is less than any of the prev_prefix values
of the first two elements of the support set, Algorithm 11 skips these elements, and sets
ptss = 3 , for which support_set [3] =(8 ,−0 .9). Finally, Algorithm 11 increments e as long
as dprange ≥ 0 and eventually computes the PMI [8 , 10]. ♢

In this example, oPIEC computes all PMIs of the dataset. In contrast, PIEC cannot com-
pute any of the PMIs because, in the data partitioning of this example, the interval starting
points have been discarded at the time when their ending points arrive at the system.

As another example, Figure 6.2 shows how oPIEC processes the instantaneous CE prob-
abilities displayed in Figure 5.2 in three data batches. Figure 6.2 features three diagrams;
each diagram shows the PMIs and the support set of oPIEC after processing each data

P. Mantenoglou 134

Reasoning over Complex Temporal Specifications and Noisy Data Streams

batch. In the first batch (left diagram), the instantaneous probability of the CE is initially
below the threshold T , and it gradually increases, overcoming the threshold at some time-
point t , i.e., In[t] ≥ T . oPIEC computes a PMI I1 including all time-points t ′ : t ≤ t ′ ≤ j ,
where j indicates the end of the data batch, and as many of the previous time-points
as possible, while maintaining that P(I1) ≥ T . Next, oPIEC caches the potential starting
points of future PMIs based on their prev_prefix values. All time-points in [0 , t] satisfy
condition (6.2) and thus, according to Proposition 12, are cached in the support set.

In the second data batch (middle diagram), oPIEC extends I1 to a longer PMI I2 ending
in this batch, because, given the newly arrived probability values, I1 is not a PMI as it is
a sub-interval of I2 and P(I2) ≥ T . Note that I2 starts earlier than I1 as the starting point
of I2 was cached in the support set. Moreover, the instantaneous probabilities in this data
batch are either above the given threshold or temporally close to those that are above the
threshold, and thus the support set does not have to be extended. In the third data batch
(right diagram), oPIEC can extend I2 further to PMI I3 , since P(I3) ≥ T , and thus match
the output of PIEC. This batch includes low instantaneous probabilities which decrease
the values of the prev_prefix list. As a result, prev_prefix [t] < min_prev_prefix holds for
some time-points t near the end of the data batch. All such time-points are cached in the
support set because they may become starting points of PMIs if high probability values
appear later in the stream.

6.1.3 Correctness and Complexity

We prove the correctness of oPIEC, i.e., we demonstrate that every interval computed
by oPIEC is a PMI, and every PMI is computed by oPIEC, given the data seen so far.
Moreover, we present the complexity analysis of the algorithms for updating the support
set and computing PMIs. We provide proof sketches for the Lemmas and Propositions
that follow. The full proofs are in Appendix C.

Algorithm 11 uses dprange to identify PMIs. We associate dprange with PMIs using the
following lemma.

Lemma 3: If I = [s , e] is a PMI, then dprange[s , e] is non-negative. Moreover, for every
interval I ′ = [k , l], such that I is a sub-inteval of I ′, we have dprange[k , l] < 0 . ▲

Proof Sketch. First, we prove that the fact that I has a probability above the chosen thresh-
old implies that dprange[s , e] ≥ 0 . For the second part of the lemma, we assume that there
is an interval I ′ =[k , l], such that I is a sub-interval of I ′ and dprange[k , l] ≥ 0 , and prove
that there must exist an interval I ′′ such that I ⊂ I ′ ⊆ I ′′ and the probability of I ′′ is
greater or equal to the threshold. This is a contradiction because I is a PMI. Therefore,
dprange[k , l] < 0 . □

We proceed by presenting the proofs of soundness and completeness of oPIEC, focusing
on PMIs starting with an element of the support set. The proofs for PMIs starting with an
element of the current data batch are similar, and thus omitted.

135 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

In the analysis that follows, it is also useful to define the state of Algorithm 11 of oPIEC
as a triple {ptss , e,flag}, in order to refer to the values of variables ptss , e and flag at a
specific iteration of the while loop of Algorithm 11. Recall that ptss and e are pointers
traversing, respectively, the support set and the current data batch, indicating the starting
and the ending point of a potential PMI, while flag is a Boolean variable declaring whether
dprange was non-negative in the previous iteration. For every PMI in a dataset, oPIEC is
guaranteed to reach the state corresponding to the starting and ending point of the PMI,
as shown below in Lemma 4.

Lemma 4: Suppose that In[i ..j] is the current data batch, [sst1 ..sstm] is the list of time-
points in the support set, and the interval I = [sstk , l], where 1 ≤ k ≤ m and i ≤ l ≤ j , is a
PMI. The execution of Algorithm 11 will eventually reach the state {k , l , true} or the state
{k , l , false}. ▲

Proof Sketch. Based on the condition of while loop of Algorithm 11, oPIEC reaches a state
where either ptss = k or e = l . We distinguish two possibilities for the first encounter of such
a state. If oPIEC reaches the state {k ′, l , true/false}, where k ′ < k , then we prove that
oPIEC increments pointer ptss in all subsequent iterations of the while loop, while keeping
pointer e constant, until we reach the state {k , l , false}. Otherwise, if oPIEC reaches the
state {k , l ′, true/false}, where l ′ < l , then, analogously, we prove that oPIEC increments
pointer e in all subsequent iterations, while keeping pointer ptss constant, until we reach
the state {k , l , true}. As a result, given that I = [sstk , l] is a PMI, the execution of Algorithm
11 reaches either the state {k , l , true} or the state {k , l , false}. □

Proposition 13 (Soundness of Interval Computation): Every interval computed by
oPIEC is a PMI of the data seen so far. ▲

Proof Sketch. We assume that In[i ..j] is the current data batch, [sst1 ..sstm] is the list
of time-points in the support set and that I =[sstk , l], where 1 ≤ k ≤ m, i ≤ l ≤ j , is an
interval computed by Algorithm 11. We prove that I is a PMI. We demonstrate that
dprange[sstk , l] ≥ 0 and show that a non-negative dprange value implies that the probabil-
ity of I is greater or equal to the threshold. It remains to show that I is not a sub-interval
of a PMI. We assume that I is a sub-interval of the PMI I ′ =[sstk ′ , l ′]. Using Lemma 4,
we show that oPIEC reaches the state {k ′, l ′+1 , true}. Since oPIEC computes I when its
state is {k , l+1 , true}, it suffices to show that the state {k , l+1 , true} cannot be reached
starting from state {k ′, l ′+1 , true}. This result leads to a contradiction, and thus I is not a
sub-interval of a PMI. Therefore, I is a PMI. □

Proposition 14 (Completeness of Interval Computation): oPIEC computes all PMIs of
the data seen so far. ▲

Proof. Suppose that In[i ..j] is the current data batch, [sst1 ..sstm] is the list of time-points
in the support set, and I = [sstk , l] is a PMI, where 1 ≤ k ≤ m and i ≤ l ≤ j . Based on
Lemma 4, oPIEC will eventually reach a state {k , l , true/false} where ptss = k and e = l .
Also, since I is a PMI, from Lemma 3, we have that dprange[sstk , l] ≥ 0 . Therefore, the
if condition in line 5 of Algorithm 11 will be satisfied, e incremented and the flag set to

P. Mantenoglou 136

Reasoning over Complex Temporal Specifications and Noisy Data Streams

true. In the following iteration, the state will become {k , l + 1 , true}. Since I is a PMI and
a sub-interval of [sstk , l + 1], based on Lemma 3, we have that dprange[sstk , l + 1] < 0 .
Therefore, the if condition will not be satisfied and, since the flag will be set to true, I will
be computed in line 7 of Algorithm 11. Hence, every PMI is computed by Algorithm 11.

Propositions 13 and 14 show that, given the data seen so far, oPIEC computes every PMI
and every interval computed by oPIEC is a PMI. Therefore, oPIEC is correct with respect
to the data seen so far.

Before presenting the complexity of oPIEC, we revisit the complexity of PIEC [Artikis et al.,
2021]. In PIEC, the computation of lists L, prefix and dp takes linear time Θ(n), where n is
the number of the input time-points. With respect to PMI computation, in the worst case,
the two pointers looking for interval starting and ending points have to traverse the input
list of size n. Therefore, this step requires O(2n). Consequently, the complexity of PIEC
may be summarised by the following proposition:

Proposition 15 (PIEC complexity): The cost of computing the PMIs in a dataset of n
time-points with PIEC is O(n). ▲

To update the support set, oPIEC iterates over the time-points of the current data batch
In[i ..j]. Therefore, this step is O(nw), where nw is the size of In[i ..j]. The process of
interval computation of oPIEC (Algorithm 11) iterates over the elements of the support set
and time-points of In[i ..j]. In the worst case, Algorithm 11 traverses the support set once
and In[i ..j] twice. Hence, the complexity of interval computation is O(m + 2nw), where m
is the size of the support set. After simplifications, the complexity bound of Proposition 16
is reached.

Proposition 16 (oPIEC complexity): The cost of computing the PMIs of a data batch and
updating the support set with oPIEC is O(m+nw), where m is the size of the support set
and nw is the size of the data batch. ▲

The data batch size nw can be constant, while the support set size m may increase over
time. In rare cases, the support set may include a significant portion of the stream seen so
far. Consider, e.g., the case where every probability value of the input stream is below the
user-defined threshold. Then, the prefix list is strictly decreasing and oPIEC caches in the
support set every time-point of the stream. In practice, m + nw is only a small fragment of
the data seen so far, i.e., n. In other words, oPIEC is more efficient than PIEC, since the
complexity of the latter increases much faster (with n) than the complexity of the former
(which increases withm). In any case, streaming applications require constant complexity.
To achieve this, the support set of oPIEC needs to be bounded. In the following section,
we present ways in which this can be achieved.

137 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

6.2 oPIEC with Bounded Memory

In streaming applications, memory and performance requirements demand a bounded
support set. We introduce oPIECb, that is, a version of oPIEC in which the support set
has a bounded size. oPIECb is equipped with a support set maintenance algorithm which
decides which elements, if any, should be deleted from the support set, in order to make
room for new ones. Consequently, compared to oPIEC which computes all the PMIs of a
dataset, oPIECb may detect, for instance, fewer or shorter intervals.

In practice, we observe that the support set of oPIECb often includes elements with time-
stampsmuch prior to the current time. In most applications, each CE has a typical duration
and it is not useful to anticipate an instance of a CE which exceeds that duration signifi-
cantly. As an example, in human activity recognition, it is improbable that two people are
fighting for more than five minutes, and thus support set elements with temporal distance
greater than five minutes from the current time are very unlikely to be useful for computing
PMIs. To take advantage of this property, we propose an extension of the support set
maintenance algorithm of oPIECb in order to consider CE-specific statistics concerning
the duration of PMIs. In the following, we first outline the support set maintenance algo-
rithm of oPIECb, and then present oPIECbd, the variant of oPIECb which considers the
expected PMI duration.

6.2.1 Support Set Maintenance with oPIECb

The support set maintenance algorithm of oPIECb works as follows. When a time-point
t satisfying condition (6.2) arrives, i.e., t may be the starting point of a PMI, oPIECb con-
siders caching it in the support set. If the designated support set limit is exceeded, then
oPIECb decides whether to cache t , replacing some older time-point of the support set,
by computing the ‘score range’, i.e., an interval of real numbers defined as follows:

score_range[t] =[prev_prefix [t], prev_prefix [prevs [t]]) (6.3)

The score_range is computed for the time-points in set S , i.e., the time-points already in
the support set and the time-points that are candidates for the support set. The elements
in S are tuples of the form (t , prev_prefix [t]), which are sorted in ascending time-point
order and, since they satisfy condition (6.2), these tuples are also sorted in descending
prev_prefix order. prevs [t] is the time-point before t in S .

With the use of score_range[t], oPIECb computes the likelihood that a time-point t in set
S will indeed become the starting point of a PMI. The longer the score_range[t], i.e., the
longer the distance between prev_prefix [t] and prev_prefix [prevs [t]], themore likely it is that
a future time-point te will arrive with dp[te] ∈ score_range[t], and thus t will be the starting
point of a PMI. Therefore, oPIECb stores in the support set the elements with the longer
score range.

Example 27: Consider the dataset In[1 ..5] presented in Table 6.2. With a threshold value
T of 0 .5 , this dataset has a single PMI: [2 , 5]. Assume that the data arrive in two batches:

P. Mantenoglou 138

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 6.2: Support set maintenance of oPIECb.

Time 1 2 3 4 5
In 0 0 .3 0 .3 0 .6 0 .9

L −0 .5 −0 .2 −0 .2 0 .1 0 .4

prefix −0 .5 −0 .7 −0 .9 −0 .8 −0 .4
prev_prefix 0 −0 .5 −0 .7 −0 .9 −0 .8
dp −0 .5 −0 .7 −0 .8 −0 .8 −0 .4

In[1 ..4] and In[5]. Given an unbounded support set, oPIEC would have cached time-
points 1 , 2 , 3 and 4 into the support set. Assume now that the limit of the support set
is set to two elements. oPIECb processes In[1 ..4] to detect the time-points that may be
used as starting points of PMIs. These are time-points 1 , 2 , 3 and 4 . In order to respect
the support set limit, oPIECb computes the score ranges:

• score_range[1] is set to [0 ,+∞) since t = 1 has no predecessor in the support set.
• score_range[2] =[prev_prefix [2], prev_prefix [1]) =[−0 .5 , 0).
• score_range[3] = [prev_prefix [3], prev_prefix [2]) =[−0 .7 ,−0 .5).
• score_range[4] =[prev_prefix [4], prev_prefix [3]) =[−0 .9 ,−0 .7).

Given these score_range values, oPIECb caches the tuples (1 , 0) and (2 ,−0 .5) in the
support set, since these are the elements with the longest score ranges.

With such a support set, oPIECb is able to perform correct CER, i.e., compute PMI [2 , 5],
upon the arrival of the second data batch In[5]. Note that we have dprange[2 , 5] = 0 .1 ≥ 0
and t = 5 is the last time-point of the data stream so far. Also, for the other time-point of the
support set, t = 1 , we have a negative dprange, i.e., dprange[1 , 5] =−0 .4 < 0 , and hence
a PMI cannot start from t = 1 . ♢

Figure 6.3 describes how oPIECb processes the instantaneous CE probabilities displayed
in Figure 5.2 in three data batches, using a support set which may hold at most three
elements. After processing the first data batch (left diagram), oPIECb computes the PMI
I1 . Then, it identifies the same potential starting points of PMIs as oPIEC, but caches in
the support set only three of them. These are the three starting points with the longest
score_range.

After processing the second data batch (middle diagram), oPIECb extends I1 . There are
no potential starting points of PMIs in this data batch, and thus the support set of oPIECb

is not updated. When oPIECb processes the third data batch (right diagram), it extends
further I1 to I b3 . I b3 , however, is not a PMI—compare it against the interval computed by
PIEC and oPIEC. The starting point of the PMI was not cached in the support set after
processing the first data batch, and oPIECb could only compute a slightly shorter interval.
oPIECb updates the support set with a new element, because the low probability values
near the end of this data batch have caused a large decrease in the values of prefix . As

139 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

0

0.2

0.4

0.6

0.8

1

Time
P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

Figure 6.3: Probabilistic recognition over noisy data streams (continued from Figure 6.2).
The orange straight line expresses the recognition of oPIECb after processing the current
data batch. Black crosses denote the potential starting points of future PMIs computed
by oPIEC/oPIECb and cached by oPIEC. Orange crosses depict the ones cached in the
bounded support set of oPIECb after processing the current data batch.

a result, the first candidate element of this batch has a longer score_range than one of the
time-points previously cached in the support set, and thus takes its place.

6.2.2 Support Set Maintenance with oPIECbd

It is often the case that oPIECb maintains in the support set elements whose time-points
are much earlier than the current data batch, while the duration of a CE is usually within
some bounds. See, for example, the first cached time-point, depicted as an orange cross,
in the right diagram of Figure 6.3—it is unlikely that this time-point will become the starting
point of a PMI in a future data batch. To address this issue, we introduce oPIECbd, a vari-
ant of oPIECb with a support set maintenance algorithm taking advantage of CE-specific
knowledge regarding PMI duration, which may be obtained by observing historical data.
We assume that the duration of PMIs is normally distributed and oPIECbd is given the
mean µ and the standard deviation σ of the observed values. During online execution,
when support set conflicts arise, oPIECbd utilises this information for support set mainte-
nance.

The support set maintenance algorithm of oPIECbd works as follows. First, oPIECbd con-
structs the set S which contains every element of the support set and the candidate el-
ements. When the size of S is greater than the support set limit mb, oPIECbd computes,
for each element ti in S , its least duration ldi = tnow−ti+1 , where tnow expresses the last
time-point of the current batch. ldi denotes the minimum duration of a PMI starting from
ti and ending in some future data batch. (Upon each incoming data batch, support set
maintenance takes place after PMI computation. At this stage, therefore, oPIECbd has
computed the PMIs ending in the current data batch.) Then, oPIECbd calculates the dele-

P. Mantenoglou 140

Reasoning over Complex Temporal Specifications and Noisy Data Streams

t1t2t3 tnow

ld3
ld2

µ
ld1

ld2 ld3

d
u
ra
ti
o
n
sP

D
F
(x
)

x

∫ ld3
2µ−ld3

durationsPDF (x) dx = 0 .68∫ ld2
2µ−ld2

durationsPDF (x) dx = 0 .38

µld1

Figure 6.4: The deletion probabilities of the elements of set S whose time-points are t1 , t2
and t3 . The left diagram shows the temporal positions of these time-points in relation to the
last time-point of the current batch tnow and their least durations ld1 , ld2 and ld3 in relation
to the mean duration µ of the observed values. The right diagram visualises the process of
calculating the deletion probabilities of these time-points. For time-point t1 , delPr(t1)= 0
because ld1 <µ. For time-points t2 and t3 , whose least durations are greater than µ, delPr
is equal to the area under durationsPDF defined by the integral of equation (6.4). As an
example, delPr(t2) is equal to the area under durationsPDF between 2µ−ld2 and ld2 , i.e.,
delPr(t2)=

∫ ld2
2µ−ld2

durationsPDF (x) dx .

tion probability of ti , defined as follows:

delPr(ti)=

{
0 ldi ≤µ∫ ldi
2µ−ldi

durationsPDF (x) dx ldi >µ
(6.4)

durationsPDF is the probability density function of the normal distribution N (µ, σ2)
with mean µ and standard deviation σ of the observed duration values. Thus,∫ y

−∞durationsPDF (x) dx is equal to the probability that a sample generated from N (µ, σ2)

is smaller than y . As an example,
∫ µ

−∞durationsPDF (x) dx= 0 .5 denotes that a sample
generated from N (µ, σ2) is shorter than the observed mean value µ with a probability
equal to 50%. According to expression (6.4), the deletion probability delPr(ldi) of a time-
point ti is 0 when its least duration ldi is shorter or equal to µ. In such cases, it is possible
for a future PMI starting from ti to have a duration shorter or equal to the mean µ of
the observed duration values, and therefore it is too early to delete ti . Otherwise, when
all possible future PMIs starting from ti may have a duration greater than µ, i.e., ldi >µ,
delPr(ldi) is positive and increases with the probability that a sample generated from the
given probability distribution is smaller than ldi , i.e., the area under the probability density
function up to ldi . The integral in expression (6.4), however, starts from 2µ−ldi instead of
−∞ in order to have delPr(µ)= 0 and delPr(∞)= 1 , i.e., delPr is a cumulative distribution
function.

As an example, Figure 6.4 presents the deletion probabilities of three elements with time-
points t1 , t2 and t3 , given that the observed duration values follow the normal distribution
N (µ, σ2). The left diagram of Figure 6.4 shows the temporal positions of these time-points
in relation to tnow , as well as their least durations. The least durations of t1 , t2 and t3 are

141 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

ld1 <µ, ld2 =µ+1
2
σ and ld3 =µ+σ, respectively. The right diagram of Figure 6.4 shows that

the deletion probability of t1 is 0 , because ld1 < 0 (see expression (6.4)). Moreover, the
deletion probabilities of t2 and t3 , which are equal to the line-highlighted and the orange-
coloured areas, respectively, are derived by computing the integral of expression (6.4).
As an example, for time-point t3 , whose least duration is ld3 =µ+σ, we have:

delPr(t3)=

∫ ld3

2µ−ld3

durationsPDF (x) dx =

∫ µ+σ

µ−σ

durationsPDF (x) dx = 0 .68

After each element is assigned a deletion probability, it is removed from set S if this proba-
bility is greater than a threshold generated randomly from the uniform distribution U(0 , 1).
Since this is a stochastic process, it is not guaranteed that the length of S will be equal
to mb after iterating over all of its elements. If the length of S remains greater than mb,
oPIECbd invokes the support set maintenance algorithm of oPIECb to resolve the remain-
ing conflicts.

Algorithm 12 supportSetFiltering(S , mb, µ, σ, tnow)
Input: Set S containing the support set elements and the candidate elements of the cur-
rent data batch, the maximum size of the bounded support set mb, the mean and the
standard deviation of the given duration values µ and σ, and the last time-point of the cur-
rent data batch tnow .
Output: Set S containing mb tuples which comprise the new support set.
1: durationsPDF ← N (µ, σ2)
2: for each (ti , prev_prefix [ti]) ∈ S do
3: ldi ← tnow−ti+1
4: if length(S) > mb and ldi >µ then
5: delPr(ldi)←

∫ ldi
2µ−ldi

durationsPDF (x) dx

6: threshold ← random(U(0 , 1))
7: if delPr(ldi) > threshold then S .delete((ti , prev_prefix [ti]))
8: if length(S) > mb then S ← supportSetMaintenance(S , length(S)−mb)

9: return S

Algorithm 12 describes the support set maintenance algorithm of oPIECbd. First, oPIECbd

generates durationsPDF (line 1). Then, for each time-point ti in set S , oPIECbd computes
its least duration ldi (line 3). If the support set limit is exceeded, Algorithm 12 checks
whether ldi is greater than µ (line 4). If it is, we compute the deletion probability of time-
point ti (line 5). Subsequently, Algorithm 12 generates a threshold based on the uniform
distribution U(0 , 1) (line 6) and deletes the element of S whose time-point is ti if its deletion
probability exceeds that threshold (line 7). Finally, if the support set limit is still violated
after iterating over all elements of S , Algorithm 12 invokes the support set maintenance
algorithm of oPIECb (line 8). After this step, the length of S is guaranteed to be equal to
the maximum support set size, and thus Algorithm 12 returns S as the new support set
(line 9).

The following example illustrates oPIECbd and compares it against oPIECb.

P. Mantenoglou 142

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Example 28: Suppose that oPIECb and oPIECbd operate on the data batches In[1 ..4],
In[5 ..8] and In[9 ..10] of Example 26. The maximum size of the support set for both sys-
tems is two elements. Recall that in Examples 25 and 26, given the same data stream,
oPIEC computed the following support set and PMIs:

support_set=[(1 , 0), (2 ,−0 .5), (8 ,−0 .9), (9 ,−1 .4)]
PMIs=[[1 , 5], [2 , 6], [8 , 10]]

After processing In[1 ..4], the support set of both oPIECb and oPIECbd is [(1 , 0), (2 ,−0 .5)].
Then, when In[5 ..8] arrives, both systems compute the first two PMIs: [1 , 5] and [2 , 6].
Subsequently, both systems attempt to add the tuple (8 ,−0 .9) to the support set, i.e.,
S =[(1 , 0), (2 ,−0 .5), (8 ,−0 .9)], and thus the respective maintenance algorithm is in-
voked, since the support set size is limited to two elements.

oPIECb computes the score_range of each element of S :

• score_range[1] =[0 ,+∞).
• score_range[2] =[−0 .5 , 0).
• score_range[8] =[−0 .9 ,−0 .5).

Then, oPIECb removes element (8 ,−0 .9) because it has the shortest score_range. There-
fore, when data batch In[9 ..10] arrives, oPIECb cannot compute the interval [8 , 10].

Suppose that the normal distribution fitting the duration data seen so far has µ= 4 .3 and
σ= 2 .4 . Given tnow = 8 , i.e., the last time-point of the current data batch In[5 ..8], for the first
element of S , where ti = 1 , we have ldi = tnow−ti+1 = 8 . This means that any future PMI
starting from the first element of S will have a duration of at least 8 time-points. However,
the PMI duration statistics indicate that PMIs very rarely exceed 8 time-points. When
ldi > µ, oPIECbd calculates the deletion probability of each element of the set, which for
ti = 1 is delPr(1)= 0 .88 . Therefore, element (1 , 0)will very likely be deleted from S . If this
happens, the support set of oPIECbd when In[9 ..10] arrives will be [(2 ,−0 .5), (8 ,−0 .9)]
and the final PMI, i.e., [8 , 10], will be computed. If t = 1 is not deleted, t = 2 will be deleted
with probability delPr(2)= 0 .74 , leading again to the computation of PMI [8 , 10]. ♢

Figure 6.5 demonstrates how oPIECbd processes the instantaneous CE probabilities dis-
played in Figure 5.2 in three data batches, using a support set which may hold, at most,
three elements. Similarly to oPIECb, after processing the first data batch (left diagram),
oPIECbd computes all the potential starting points of future PMIs, but caches only three of
them. Algorithm 12, using duration statistics regarding the target CE, derives that some of
the earlier time-points of the data batch are not likely to be starting points of future PMIs,
because these statistics favour intervals with a shorter duration. As a result, the support
set maintenance algorithm of oPIECbd has cached more recent time-points, compared to
oPIECb. Finally, after processing the third data batch (right diagram), oPIECbd computes
the correct interval, i.e., the PMI computed by PIEC and oPIEC, because the starting point
of the PMI is in the support set.

143 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

oPIECbdRecognition

0

0.2

0.4

0.6

0.8

1

Time
P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

oPIECbdRecognition

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Prob-EC Recognition
PIEC Recognition
oPIEC Recognition

oPIECb Recognition

oPIECb
st Recognition

Figure 6.5: Probabilistic recognition over noisy data streams (continued from Figure 6.3).
The violet straight line expresses the recognition of oPIECbd after processing the current
data batch. Violet crosses depict the potential starting points of future PMIs cached by
oPIECbd after processing the current data batch.

6.2.3 Complexity of Support Set Maintenance

In oPIEC, the cost of PMI computation given a data batch with size nw and a support set
with size m is O(m+nw) (see Section 6.1.3). In oPIECb and oPIECbd, we have a bounded
support set with, at most, mb elements. The choice of the value of mb constitutes a trade-
off between accuracy and efficiency. For small values of mb, it is more likely that a PMI
is missed because its starting point is not present in the support set. Choosing a larger
value for mb, however, may hinder the efficiency of oPIEC.

Suppose that the support set is full (mb elements) and there are nw new candidate
elements—in the worst case, there is one candidate element for each time-point in the
current data batch In[i ..j]. Both oPIECb and oPIECbd utilise set S , containing the ele-
ments of the support set and the candidate elements, i.e., mb+nw elements in total. The
support set maintenance algorithm of oPIECb removes the nw elements of S with the short-
est score ranges. This is achieved with an iterative process which compares the score
range of each element in S , with the largest score range among the nw elements of S with
the shortest score ranges found so far. This operation has a cost of O(mbnw). In total, the
cost of oPIECb amounts to that of interval computation (O(mb + nw)), support set candi-
date element identification (O(nw), because oPIEC checks the prev_prefix value of each
time-point in the data batch) and support set maintenance (O(mbnw)). After simplifications,
the complexity of oPIECb is presented in Proposition 17.

Proposition 17 (oPIECb complexity): The cost of computing the PMIs of a data batch
and updating the support set with oPIECb isO(mbnw), wheremb is the size of the bounded
support set and nw is the size of the data batch. ▲

In the case of oPIECbd, support set maintenance is performed by Algorithm 12. The filter-
ing step of Algorithm 12 (lines 1–7) iterates over each element of S once, and removes

P. Mantenoglou 144

Reasoning over Complex Temporal Specifications and Noisy Data Streams

it from S if its deletion probability exceeds a threshold. Therefore, the cost of this step
is O(mb+nw). Afterwards, if the support set limit is still exceeded, oPIECbd invokes the
support set maintenance algorithm of oPIECb, whose complexity is O(mbnw). Therefore,
the cost of support set maintenance in oPIECbd is O(mb+nw+mbnw). After simplifications,
the complexity of oPIECbd is presented in Proposition 18.

Proposition 18 (oPIECbd complexity): The cost of computing the PMIs of a data batch
and updating the support set with oPIECbd isO(mbnw), wheremb is the size of the bounded
support set and nw is the size of the data batch. ▲

In other words, the support set maintenance algorithm of oPIECbd (Proposition 17) is of
the same complexity order as the corresponding algorithm of oPIECb (Proposition 18).
This is verified by the empirical comparison presented in the following section.

In contrast to oPIECbd and oPIECb, the cost of oPIEC with an unbounded support set is
O(m+nw), where m is the size of the unbounded support set (see Proposition 16). m
increases as the stream progresses, whereas mb remains constant, and thus, in prac-
tice, mb ≪ m. Therefore, oPIEC with a bounded support set is the preferred choice for
streaming applications.

6.3 Discussion

We presented oPIEC, a formal computational framework for online, interval-based CER
over noisy events. oPIEC consumes the output of a point-based CER system to compute
the most likely maximal intervals during which a composite activity is said to take place.
oPIEC employs a ‘support set’, a memory structure with the minimal set of time-points
that guarantee correct interval computation. We provided a theoretical analysis of oPIEC,
proving its correctness and presenting its complexity, which demonstrates that the cost of
oPIEC is linear to the size of the data batch and the size of the support set. Moreover,
we proposed two bounded-memory versions of oPIEC, i.e., oPIECb and oPIECbd, in order
to support stream reasoning with very limited memory. When the size of the support set
exceeds the memory threshold, oPIECb and oPIECbd employ an algorithm that decides
which elements of the support set will be deleted in order to make room for new ones.
oPIECb keeps in memory the elements that are more likely to become starting points of CE
intervals in the future, provided that we are agnostic about the expected duration of the CE.
In contrast, oPIECbd leverages interval duration statistics to resolve memory conflicts. We
assessed both oPIECb and oPIECbd by means of complexity analyses, demonstrating that
our memory maintenance algorithms do not introduce a significant overhead in reasoning
efficiency.

The variants of oPIEC that we proposed have several benefits compared to the state of the
art (see Tables 5.3 and 5.4). Our frameworks are based on logic programming, and thus
seamlessly support an explicit representation of time, which has several advantages com-
pared to an implicit representation (see Section 5.4), as well as background knowledge
in temporal specifications. Moreover, oPIEC performs interval-based reasoning, which is,

145 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

in many cases, more accurate than point-based reasoning [Artikis et al., 2021]. The liter-
ature includes several interval-based frameworks that handle uncertainty, such as PEL,
MLN-Allen and CP-logic; none of these frameworks derives the intervals of CEs with a
single pass over the input stream. In oPIECb and oPIECbd, the cost of reasoning depends
only on the size of the data batch and the size of the working memory, which are constant
and low. In Chapter 7, we present an extensive, reproducible empirical analysis of oPIECb

and oPIECbd, demonstrating the benefits of using interval duration statistics and showing
that our frameworks outperform state-of-the-art systems.

P. Mantenoglou 146

Reasoning over Complex Temporal Specifications and Noisy Data Streams

7. EXPERIMENTAL EVALUATION OF oPIEC

We present an experimental evaluation of oPIECb and oPIECbd, i.e., our interval-based
frameworks for reasoning over noisy data streams. In Section 7.1, we describe the appli-
cations that we employed in our experiments. In Section 7.2, we present our experiments.
Section 7.3 provides commentary on our results.

7.1 Experimental Setup

We describe the setup of the experiments concerning human activity recognition and mar-
itime situational awareness. We present the input data, i.e., the simple, derived events
(SDE)s and accompanying contextual data, and the output composite events (CE)s. In all
experiments, the task of oPIECbd is to compute the PMIs of CEs.

Human Activity Recognition

Data. To evaluate our work, we used CAVIAR1, a benchmark activity recognition dataset.
CAVIAR includes 28 videos with 26,419 video frames in total. The videos are staged, i.e.,
actors walk around, sit down, meet one another, fight, etc. Each video has been manually
annotated by the CAVIAR team in order to provide the ground truth for both SDEs, taking
place on individual video frames, as well as CEs. Table 7.1 describes the SDEs and the
CEs of CAVIAR. The input to the activity recognition system consists of SDEs such as
‘inactive’, i.e., standing still, ‘active’, i.e., non-abrupt body movement in the same position,
‘walking’ and ‘running’, together with their time-stamps, that is, the video frame in which
the SDE took place. The dataset also includes the coordinates of the tracked people and
objects as pixel positions at each time-point, as well as their orientation. Consider the
following example:

happensAt(walking(id0), 680).
holdsAt(coord(id0)=(262 , 285), 680).
holdsAt(orientation(id0)= 0 , 680).

According to this video frame annotation, id0 is walking at video frame 680 , located at
(262 , 285) in the two dimensional projection of the video, and facing towards the horizontal
axis of this projection.

CAVIAR includes inconsistencies, as the members of the CAVIAR team that provided the
annotation for SDEs and CEs did not always agree with each other [List et al., 2005; Skar-
latidis et al., 2015a]. Furthermore, to allow for a more demanding evaluation, Skarlatidis
et al. [2015] injected noise into CAVIAR, producing the following datasets:

1https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

147 P. Mantenoglou

https://groups.inf.ed.ac.uk/vision/DATASETS/CAVIAR/CAVIARDATA1/

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 7.1: The input SDEs (above the dashed line) and contextual data (below the dashed
line), and the output CEs of human activity recognition.

Entity Description

SD
Es

&
co
nt
ex
tu
al
da
ta

walking(P) Person P is walking.
running(P) Person P is running.

active(P)
Person P performs non-abrupt body
movements without changing position.

inactive(P) Person P is standing still.
abrupt(P) Person P performs abrupt body movements.
appear(P) Person P starts being tracked.

disappear(P) Person P stops being tracked.

coord(P)=(X ,Y) Person P is at position (X ,Y).

orientation(P)=Θ
Person P is facing at an angle of Θ degrees w.r.t.
the x-axis in the two-dimensional video projection.

C
Es

moving(P1 ,P2) Persons P1 and P2 are moving together.
meeting(P1 ,P2) Persons P1 and P2 are having a meeting.
fighting(P1 ,P2) Persons P1 and P2 are fighting.

• Smooth noise: SDEs have been attached with probability values, generated by a
Gamma distribution with a varying mean, which signify the probability of their occur-
rence.

• Strong noise: Apart from SDEs, probabilities have also been attached to contex-
tual information (coordinates and orientation) using the same Gamma distributions.
Moreover, spurious SDEs that do not belong to the original dataset have been added
using a uniform distribution.

Task. Given the SDEs and contextual data of each video frame, the task is to recognise
the CEs ‘moving’, ‘meeting’ and ‘fighting’.

Evaluation.We evaluated the predictive accuracy of oPIECbd and oPIECb on the CAVIAR
dataset for human activity recognition. The streams of instantaneous CE probabilities we
used as input were generated either by Prob-EC or OSLα. Recall that Prob-EC is an
implementation of the Event Calculus in ProbLog, designed to handle data uncertainty
(see Section 5.2). OSLα translates the Event Calculus into Markov Logic [Skarlatidis et al.,
2015b], and uses supervised learning to generate weighted CE definitions [Michelioudakis
et al., 2016; Michelioudakis et al., 2019]. OSLα is not designed to handle probabilistic
data, and thus was trained on the original CAVIAR dataset (see [Michelioudakis et al.,
2016] for the setup of the training process). The CE definitions used by Prob-EC were
constructed manually and are not weighted.

P. Mantenoglou 148

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 7.2: The input SDEs (above the dashed line) and contextual data (below the dashed
line), and the output CEs of maritime situational awareness.

Entity Description

SD
Es

&
co
nt
ex
tu
al
da
ta

entersArea(V ,A) Vessel V enters area A.
leavesArea(V ,A) Vessel V exits area A.
gapStart(V) Vessel V stops sending position signals.
gapEnd(V) Vessel V resumes sending position signals.
stopStart(V) Vessel V starts being idle.
stopEnd(V) Vessel V stops being idle.

slowMotionStart(V) Vessel V starts moving at a low speed.
slowMotionEnd(V) Vessel V stops moving at a low speed.

proximityStart(V1 ,V2) Vessels V1 and V2 start being close to each other.
proximityEnd(V1 ,V2) Vessels V1 and V2 stop being close to each other.

coord(V)=(Lat ,Lon) Vessel V is at position (Lat ,Lon).
velocity(V)= S Vessel V sails at speed S .

C
Es

rendezVous(V1 ,V2)
Vessels V1 and V2 are nearby in the

open sea, stopped or sailing at a low speed.

tugging(V1 ,V2)
Vessels V1 or V2 is a tugboat and
is pulling or towing the other vessel.

The support set maintenance algorithm of oPIECbd requires CE duration statistics. For
this reason, the presented experiments were performed using 5-fold cross-validation. We
made sure that all folds were balanced with respect to the number of CE instances, and
that no video was split between the training and test sets. In each fold, the durations of the
PMIs identified by PIEC in the training set were used when testing oPIECbd in the corre-
sponding test set. In other words, oPIECbd had to compute the PMIs in the test set given
the mean and the standard deviation of the PMIs of the training set. The overall (micro) f1-
score was derived by combining the results of all folds. A perfect f1-score implies that the
intervals computed by oPIECb/oPIECbd match precisely the PMIs of PIEC. oPIECbd and
oPIECb operated on data batches of one time-point, i.e., performing reasoning at every
time-point and then discarding it, unless cached in the support set.

Maritime Situational Awareness

Data. To test further oPIECbd, we employed a publicly available dataset2 which includes
18 million AIS position signals collected from 5 thousand ships sailing in the area of Brest,

2https://zenodo.org/record/1167595

149 P. Mantenoglou

https://zenodo.org/record/1167595

Reasoning over Complex Temporal Specifications and Noisy Data Streams

France, for a period of six months, betweenOctober 2015 andMarch 2016. AISmessages
comprise dynamic information (position, speed, etc.), as well as static information (name,
type, etc.) about vessels [Bereta et al., 2021]. This dataset has been pre-processed by
means of trajectory simplification [Patroumpas et al., 2017; Fikioris et al., 2023] and spatial
processing [Santipantakis et al., 2018]. The former process annotated position signals of
interest as ‘critical’, signifying major changes in a vessel’s behaviour such as a stop, a
turn, and a gap in signal transmission, while the latter process computed spatial relations
between vessels, such as vessels being close to each other. Table 7.2 describes the
SDEs and CEs of the Brest dataset. Consider the following example of input data:

happensAt(leavesArea(id2 , fishing), 492).
holdsAt(coord(id2)=(48 .12 ,−4 .35), 492).
holdsAt(velocity(id2)= 5 .13 , 492).

According to these records, vessel id2 leaves some fishing area at time-point 492 ; more-
over, id2 is located at (48 .12 ,−4 .35) and sailing with a speed of 5 .13 knots.

We injected noise into the dataset of Brest by assigning a probability value to every item of
the dataset. We followed [Zocholl et al., 2019] and assumed that the confidence of an AIS
signal decreases as the distance of the corresponding vessel from the nearest coastline
base station increases, and annotated each signal of the dataset with a probability using
the following function:

Pc(x) = 1 − x

x + c

x is the distance of the ship from the nearest base station and c is a distance threshold
denoting our confidence concerning the veracity of signals. According to the function
above, the probability of a position signal decreases as the value of c decreases. We
constructed a ‘smooth noise’ and a ‘strong noise’ version of the Brest dataset by applying
the noise functions P10000 and P5000 on the original dataset.

Task. Given the input presented in Table 7.2, the task is to recognise the CEs ‘rendez-
vous’, i.e., a potential ship-to-ship transfer of goods in the open sea, and ‘tugging’, i.e.,
the activity of pulling a ship into or out of a port. These CEs were defined following expert
opinion [Pitsikalis et al., 2019].

Evaluation. For our experiments on maritime situational awareness, we employed Prob-
EC to produce probability values for the instantaneous occurrences of the target CEs,
i.e., ‘rendez-vous’ and ‘tugging’. Subsequently, we evaluated oPIECb and oPIECbd on the
derived probability streams. We compared the intervals computed by oPIECb and oPIECbd

when processing online the CE probabilities of Prob-EC against the PMIs computed by
PIEC when processing the same data as a single batch. The duration statistics required
by oPIECbd were derived by a cross-validation setting similar to that of the experiments
on human activity recognition. We made sure that the folds were balanced in terms of CE
instances, and that the set of vessels in the training set is disjoint from the set of vessels in
the test set. The batch size of oPIECb and oPIECbd was set to one, while the probabilistic
threshold T was set to 50%.

P. Mantenoglou 150

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(a)moving
‘smooth noise’

(b)moving
‘strong noise’

(c)meeting
‘smooth noise’

(d)meeting
‘strong noise’

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(e) fighting
‘smooth noise’

(f) fighting
‘strong noise’

(g)moving
OSLα

(h)meeting
OSLα

Figure 7.1: The predictive accuracy of oPIECbd and oPIECb on human activity recognition.
The intervals computed by oPIECbd and oPIECb are compared to the PMIs computed
by PIEC. The point-based systems providing the input probability streams are Prob-EC
(diagrams (a)–(f)) and OSLα (diagrams (g)–(h)).

PIEC, oPIECb and oPIECbd are written in Python. For the remaining frameworks of our
evaluation (see ‘Comparisons with the State of the Art’ in Section 7.2), we used the pro-
gramming language (version) recommended by its developers. We used a single core of
a desktop PC running Ubuntu 20.04, with Intel Core i7-4770 CPU @3.40GHz and 16GB
RAM. The code of oPIECb and oPIECbd, as well as the complete event descriptions and
the datasets we employed, are publicly available3, allowing the reproducibility of our em-
pirical analysis.

7.2 Experimental Results

Human Activity Recognition. Figure 7.1 presents the predictive accuracy of oPIECbd

and oPIECb, operating with a probabilistic threshold T = 50%; using this value, PIEC out-
performs point-based recognition. These results demonstrate that the use of oPIECbd

leads to significant performance gains compared to oPIECb. In all cases, oPIECbd out-
performs oPIECb, highlighting the importance of taking into consideration PMI duration
statistics. Note that in the case of ‘meeting’ oPIECbd performs better under ‘strong noise’
than ‘smooth noise’, when Prob-EC provides the input stream (see Diagrams 7.1(c) and

3https://github.com/periklismant/opiec

151 P. Mantenoglou

https://github.com/periklismant/opiec

Reasoning over Complex Temporal Specifications and Noisy Data Streams

oPIECbd

oPIECb

PIEC

I1 I2

Figure 7.2: Indicative comparison of the intervals computed by PIEC (top) against those
computed by oPIECbd (middle) and oPIECb (bottom). Green lines denote true positives,
red lines denote false positives, while grey lines denote false negatives.

Table 7.3: Indicative interval computation comparison between PIEC, oPIECbd and
oPIECb. The first column presents the PMIs computed by PIEC. The second and third
columns present the support sets (lists of tuples in the form of (t , prev_prefix [t])) of
oPIECbd and oPIECb, respectively, at the time denoted by the ending point of the cor-
responding PMI.

Target PMI oPIECbd support set oPIECb support set

I1 =[17492 , 18881]
[(17312 ,−7075), (17390 ,−7114), (17495 ,−7167), [(0 , 0), (4858 ,−1096), (10391 ,−3628),

(17556 ,−7192), (17673 ,−7211)] (13025 ,−4936), (17133 ,−6986)]

I2 =[21602 , 22960]
[(21503 ,−8475), (21559 ,−8503), (21616 ,−8532), [(0 , 0), (10391 ,−3628), (13025 ,−4936),

(21680 ,−8555), (21793 ,−8572)] (17133 ,−6986), (20715 ,−8081)]

7.1(d)). Some intervals which were PMIs under ‘smooth noise’ are not PMIs under ‘strong
noise’ because their probabilities have dropped below the threshold. This exclusion of
lower probability PMIs produces more reliable duration statistics for oPIECbd.

In order to illustrate the performance of oPIECbd, we analyse some typical snapshots of
our experiments. Figure 7.2 displays two PMIs, I1 and I2 , computed by PIEC for ‘meeting’
under ‘strong noise’, and the corresponding intervals computed by oPIECbd and oPIECb.
Table 7.3 displays the endpoints of PMIs I1 and I2 , along with the support sets of oPIECb

and oPIECbd at the time denoted by the ending point of the corresponding PMI. The sup-
port sets of oPIECb and oPIECbd may hold at most five elements, while the mean and the
standard deviation of the duration values provided to oPIECbd are 411 and 22 time-points,
respectively.

Consider oPIECb and oPIECbd attempting to compute PMI I1 =[17492 , 18881] with
the corresponding support sets displayed in Table 7.3. oPIECb computed the inter-
val [17133 , 18522] starting from the time-point of the last support set element, i.e.,
(17133 ,−6986). The time-point t = 17492 , with prev_prefix [t] =−7164 , was not stored
in the support set because its score_range was shorter than the score_range of all support
set elements. In contrast, oPIECbd maintained in the support set the time-point 17495 ,
and thus computes the interval [17495 , 18883], having only three false negatives and two
false positives. In oPIECbd, support set elements which are ‘outdated’ with respect to du-
ration statistics are eventually removed. Note that the intervals computed by oPIECb and

P. Mantenoglou 152

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0 10 20 30 40 50
0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(a) rendez-vous
‘smooth noise’

(b) rendez-vous
‘strong noise’

(c) tugging
‘smooth noise’

(d) tugging
‘strong noise’

Figure 7.3: The predictive accuracy of oPIECbd and oPIECb onmaritime situational aware-
ness. The intervals computed by oPIECbd and oPIECb are compared to the PMIs com-
puted by PIEC. The point-based system providing the input probability streams is Prob-EC.

oPIECbd are PMIs. PIEC chose I1 over these intervals because I1 has the highest ‘credi-
bility’, i.e., among overlapping PMIs, PIEC chooses the one with the highest probability.

In the case of PMI I2 =[21602 , 22960], all intervals starting from a time-point in the sup-
port set of oPIECb have a probability below the threshold. In such cases, the recognition
of oPIECb follows point-based recognition, i.e., it returns the time periods during which
instantaneous CE probability is greater or equal to the threshold, which resulted in the
construction of a sub-interval of I2 , i.e., oPIECb could not compute a PMI. In contrast,
oPIECbd maintained in its support set time-point 21616 , which is the starting point of a PMI
overlapping I2 .

Maritime Situational Awareness. Figure 7.3 presents the f1-scores of oPIECbd and
oPIECb. oPIECbd performs at least as well as oPIECb in the case of ‘rendez-vous’ and
clearly outperforms oPIECb in the case of ‘tugging’. In the recognition of ‘tugging’, it is
often the case that all intervals starting from a time-point in the support set of oPIECb and
ending in the current data batch have a probability below the threshold. It such cases, the
intervals computed by oPIECb are confined only to time-points with probability above the
threshold, and thus oPIECb detects sub-intervals of PMIs, resulting in false negatives. In
contrast, oPIECbd is more accurate than oPIECb because it promptly discards obsolete
time-points from the support set. In the case of ‘rendez-vous’, the elements in the support
set of oPIECb often coincide with those maintained after consulting the provided duration
statistics. Thus, the performance of oPIECb is closer to that of oPIECbd.

The aim of the next set of experiments was to compare the run-times of oPIECbd, oPIECb

and PIEC. We show the results of this comparison on ’rendez-vous’ under ’strong noise’;
the results for the other CEs in maritime situational awareness and human activity recogni-
tion are similar and thus not shown here. The support set size limit was set to 50 elements
for both oPIECbd and oPIECb, as this value leads to near-perfect PMI computation (see
Figure 7.3(b)). The data batch size was set to one time-point. Upon each new batch ar-
rival, PIEC had to process every input probability value from the start of the stream until
the latest data batch, in order to ensure correct PMI computation. Table 7.4(a) shows the

153 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Table 7.4: Run-times of oPIECbd, oPIECb and PIEC when computing the PMIs of ‘rendez-
vous’ under ‘strong noise’.

(a) Total run-times of oPIECbd, oPIECb and PIEC in seconds when processing data streams of increasing
size.

total stream size
(number of time-points) 1K 2K 4K 8K

PIEC 1 .92 ± 0 .32 7 .53 ± 1 .24 29 .76 ± 4 .9 134 .63 ± 22
oPIECb 0 .09 ± 0 .02 0 .19 ± 0 .05 0 .38 ± 0 .1 0 .7 ± 0 .2
oPIECbd 0 .09 ± 0 .02 0 .19 ± 0 .05 0 .39 ± 0 .1 0 .72±0 .23

(b) Total run-times of oPIECbd and oPIECb in seconds as the support set size increases.

support set size
(number of elements) 50 100 200 400

oPIECb 0 .7 ± 0 .21 1 .27 ± 0 .5 2 .4 ± 1 .1 4 .79 ± 2 .41
oPIECbd 0 .7 ± 0 .23 1 .27 ± 0 .53 2 .4 ± 1 .1 4 .79 ± 2 .41

performance of PIEC, oPIECb and oPIECbd for input data streams with size ranging from
1,000 to 8,000 time-points. oPIECbd and oPIECb have effectively the same performance;
their run-times increase linearly with the input stream size, as the cost of processing an
incoming data batch depends only on the size of the data batch and the size of the support
set, which remain constant, and not on the entire history of the stream. Not surprisingly,
the use of PIEC becomes prohibitively expensive as the stream progresses. These results
are compatible with the complexity analyses of Sections 6.1.3 and 6.2.3.

In order to stress test oPIECbd and oPIECb further, we performed experiments for support
set sizes ranging from 50 to 400 elements, while the stream size remains constant and
equal to 8,000 time-points. Table 7.4(b) shows the results. Again, the performance of both
systems is nearly identical. In other words, the additional operations of oPIECbd impose
practically no overhead to the system (see Section 6.2.3).

Comparisonswith the State of the Art.We compared oPIECbd with three state-of-the-art
systems: the Simplified Event Calculus implemented in ProbLog (SEC), the Probabilistic
Event Calculus (PEC) and OSLα. SEC is a probabilistic Event Calculus framework that
supports uncertainty in both SDEs and CE definitions [McAreavey et al., 2017]. Similar to
Prob-EC, SEC performs point-based recognition. We compared the predictive accuracy
of oPIECbd and SEC using the CE annotation provided by the CAVIAR team as the ground
truth. We investigated the detection of the ‘meeting’ CE under ‘strong noise’ and the de-
tection of the ‘fighting’ CE under ‘smooth noise’ and ‘strong noise’. We used the threshold
values leading to the best performance for each system. When recognising ‘meeting’
and ‘fighting’ under ‘strong noise’, we set T = 50% for all systems. In the case of ‘fight-
ing’ under ‘smooth noise’, the best performance for SEC is achieved with T = 90%, while
oPIECbd reached its best performance with T = 50%. oPIECbd was evaluated using 5-fold

P. Mantenoglou 154

Reasoning over Complex Temporal Specifications and Noisy Data Streams

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

oPIECbd

SEC

(a)meeting
‘strong noise’

0 50 100 150
0.7

0.8

0.9

support set size
f1
-s
co

re

(b) fighting
‘smooth noise’

0 50 100 150
0.4

0.5

0.6

support set size

f1
-s
co

re

(c) fighting
‘strong noise’

Figure 7.4: The predictive accuracy of oPIECbd and SEC against the ground truth pro-
vided by the CAVIAR team. The standard deviations in diagram (b) are small, and thus
not visible. oPIECbd consumed the instantaneous CE probabilities computed by Prob-EC
(which are the same as the instantaneous CE probabilities computed by SEC).

cross-validation, while SEC does not require training. Figure 7.4 shows the f1-scores of
oPIECbd and SEC, as the size of the support set used by oPIECbd increases from 0 to
150 elements. Our results show that the use of oPIECbd improves upon the point-based
recognition of SEC, while requiring only a small subset of the data.

Figure 7.5 shows the reasoning times of oPIECbd and SEC when processing SDE streams
of increasing size. The reasoning times presented for oPIECbd include the time that Prob-
EC required to derive the instantaneous CE probabilities which are necessary for PMI
computation. As a matter of fact, PMI computation takes up approx. 0 .2% of the times
shown in Figure 7.5. Our results show that oPIECbd scales much better than SEC. SEC
computes the probability of a CE at each time-point from scratch, without taking into con-
sideration the CE probabilities derived at previous time-points. In contrast, oPIECbd uses
Prob-EC, which derives CE probabilities incrementally as time progress, avoiding redun-
dant computations and maintaining in memory only the probabilities of CEs at the previous
time-point.

A closely related system is PEC, i.e., a probabilistic Event Calculus framework for point-
based recognition, which is implemented in answer set programming (ASP) for evaluation
with a state-of-the-art ASP solver [D’Asaro et al., 2017; D’Asaro, 2019]. The ASP imple-
mentation of PEC has been used in a decision-making system monitoring the attention
levels of children engaging in rehabilitation exercises [D’Asaro et al., 2023]. We tried to
compare the predictive accuracy of oPIECbd against that of PEC, but could not conduct
a meaningful comparison due to the high reasoning times of PEC. Figure 7.5 shows that
the reasoning time of PEC increased exponentially as we doubled the number of SDEs in
the input stream. Moreover, given a stream with at least 256 SDEs, we had to terminate
the execution of PEC because it ran for more than 5 hours.

OSLα is a supervised learning system optimising the structure and weights of CE defini-
tions in an Event Calculus expressed in Markov Logic [Michelioudakis et al., 2016; Miche-
lioudakis et al., 2019]. OSLα has proven effective in the task of learning human activity

155 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

64 128 256 512 1024
1

101

102

103

104

105

number of events in stream

re
a
so

n
in
g
ti
m
e
(s
e
c)

oPIECbd+Prob-EC SEC PEC

Figure 7.5: The reasoning times of oPIECbd and Prob-EC (oPIECbd+Prob-EC), SEC and
PEC on the task of detecting the ‘moving’ CE under ‘smooth noise’ in logarithmic scale.
PEC and SEC requiredmore than 5 hours to process streams including at least 256 events
and 1024 events, respectively, and thus we terminated their execution in these cases.

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

meeting

oPIECbd

OSLα

Figure 7.6: The predictive accuracy of oPIECbd and OSLα on the task of detecting the
‘meeting’ CE against the ground truth provided by the CAVIAR team.

definitions, often outperforming manually constructed rules. We compared the predictive
accuracy of oPIECbd and OSLα with respect to detecting the ‘meeting’ CE against the
ground truth provided by the CAVIAR team. OSLα is not designed to handle probabilistic
data, and thus operated on the original CAVIAR dataset. OSLα included a training phase
during which it learned a definition of ‘meeting’ in the form of weighted Event Calculus
rules, given a training set containing a subset of the annotation provided by the CAVIAR
team (see [Michelioudakis et al., 2016] for the setup of the training process). Afterwards,
OSLα was evaluated in the remaining instances of ‘meeting’, using the learned pattern
to compute the probability of ‘meeting’ at each time-point. oPIECbd processed the instan-
taneous probabilities derived by OSLα in order to compute the intervals of ‘meeting’ and
was trained using 5-fold cross-validation. The threshold value for all systems was set to
70% because this choice maximises the predictive accuracy of each system.

Figure 7.6 presents our results, according to which the interval-based recognition of

P. Mantenoglou 156

Reasoning over Complex Temporal Specifications and Noisy Data Streams

oPIECbd improves upon the recognition of OSLα. The instantaneous probabilities com-
puted by OSLα include frequent fluctuations (similar to the one presented in Figure 5.2),
which lead to false negatives. oPIECbd addressed this issue by computing PMIs and, as
a result, outperformed the point-based recognition of OSLα.

7.3 Discussion

We outlined our experimental evaluation of oPIECb and oPIECbd on two composite event
recognition applications, i.e., human activity recognition and maritime situational aware-
ness. For both applications, we constructed noisy data streams by injecting varying levels
of artificial noise into the original, crisp data streams. First, we compared the predictive
accuracy of oPIECb and oPIECbd against the batch processing of PIEC on both applica-
tions, using support sets of increasing size. In all of our experiments, oPIECbd performed
at least as well as oPIECb, while nearly reaching the accuracy of batch processing using
support sets whose sizes were bounded by a very small portion of the stream. Second,
we compared oPIECb, oPIECbd and PIEC in terms of reasoning efficiency, demonstrat-
ing the benefits of our extensions of PIEC for stream reasoning. Third, we compared
oPIECbd, which proved to be more accurate than oPIECb in the previous experiments,
with three state-of-the-art frameworks that perform CER over noisy events. Our results
demonstrated that the interval-based recognition of oPIECbd is more accurate than the
point-based recognition of these frameworks, when compared against the ground truth
annotation of our human activity recognition dataset. Moreover, we showed that oPIECbd

scales much better than the state-of-the-art frameworks (see Figure 7.5).

157 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 158

Reasoning over Complex Temporal Specifications and Noisy Data Streams

8. SUMMARY AND FUTURE WORK

8.1 Summary

The goal of this thesis was to develop novel stream reasoning techniques, with respect to
the requirements of contemporary applications. In Chapter 1, we outlined several require-
ments for effective stream reasoning, such as a formal and declarative temporal speci-
fication language with a hierarchical pattern organisation, incorporating relational situa-
tions and background knowledge, an interval-based semantics for durative situations, as
well as efficient reasoning algorithms with optimised windowing techniques that avoid re-
computations, paving the way for reasoning with minimal latency. We identified the Event
Calculus, i.e., a logic programming formalism for representing and reasoning about events
and their effects, as a suitable language for reasoning over event streams. In Section 2.5,
we reviewed the systems found in the literature, focusing on logic-based frameworks and
frameworks that are based on the Event Calculus. Our analysis concluded that, based
on the aforementioned requirements, RTEC is the most effective Event Calculus-based
framework for reasoning over streams. RTEC, however, does not support three types
of temporal specifications—cyclic dependencies, events with delayed effects and Allen
relations—that are commonly required for modelling the domains of contemporary appli-
cations. Moreover, none of the systems that we find in literature supports the aforemen-
tioned specifications, while being suitable for reasoning over large data streams (see Table
2.3). To address this issue, we proposed three orthogonal extensions of RTEC, in order
to capture each one of these three types of specifications.

In Section 3.2, we proposed RTEC◦, an extension of RTEC supporting temporal patterns,
written in the Event Calculus, with cyclic dependencies. While there are other Event Cal-
culus dialects that support cyclic dependencies, RTEC◦ is the only Event Calculus-based
system that handles such dependencies efficiently, by employing an incremental caching
algorithm that avoids redundant computations. We demonstrated that temporal speci-
fications in RTEC◦ are locally stratified logic programs. We proved the correctness of
the incremental caching algorithm of RTEC◦ and outlined its worst-case time complexity,
demonstrating that our algorithm is suitable for reasoning over large data streams. More-
over, we compared RTEC◦ experimentally with a ‘naive’ version of RTEC◦ that does not
feature incremental caching, as well as with jREC, an Event Calculus-based system that
supports cyclic dependencies, demonstrating the superior reasoning efficiency of RTEC◦.

In Section 3.3, we presented RTEC→, i.e., an extension of RTEC for reasoning over
streams of events with delayed effects. RTEC→ extends the language of RTEC with con-
structs expressing that a situation of interest may be initiated as a future effect of a set
of events, as well as that such a future initiation may be postponed. We showed that
temporal specifications in RTEC→ are locally stratified logic programs and outlined an op-
timal processing order, which can be determined at compile-time. At run-time, RTEC→

uses incremental caching to compute the maximal intervals of situations of interest that
are defined based on events with delayed effects without any redundant computations.

159 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Moreover, RTEC→ identifies the minimal information that needs to be transferred between
windows, in order to compute these intervals correctly in a streaming setting. Our empiri-
cal evaluation of RTEC→ highlighted the positive effects of caching in reasoning efficiency
and demonstrated that RTEC→ outperforms the state of the art, often by several orders of
magnitude, when reasoning with patterns that include events with delayed effects, as well
as when reasoning with patterns that do not include such events.

In Section 3.4, we proposed RTECA, an extension of RTEC that supports temporal pat-
terns that involve the relations of Allen’s interval algebra. RTECA extends the syntax of
pattern specifications in RTEC, in order to allow the use of Allen relations as interval ma-
nipulation constructs. We showed that the semantics of the language is not affected by
this extension, i.e., temporal specifications in RTECA are locally stratified logic programs.
Moreover, we provided a linear time algorithm for computing all interval pairs that satisfy
an Allen relation, among two sorted lists of maximal intervals. Subsequently, we proposed
an extension of this algorithm, in order to support windowing, and proved the correctness
of the algorithm in a batch and in a streaming setting. In our experimental evaluation of
RTECA, we compared our approach with two state-of-the-art systems that support Allen
relation. Our experiments assessed the efficiency of Allen relation computation in both
batch and windowing mode, as well as composite event recognition with Allen relations
on real maritime data. Our results showed that RTECA is more efficient than the state of
the art, outperforming the systems we selected in all of our experiments, by at least one
order of magnitude.

Real applications often exhibit uncertainty; thus, a stream reasoning framework needs to
be robust in the presence of noisy data streams. In Section 5.4, we presented a literature
review on computational frameworks that handle uncertainty, concluding that there is no
framework in the literature that supports noisy data streams, while fulfilling the require-
ments we outlined in Chapter 1. Our analysis showed that the probabilistic event recogni-
tion framework PIEC exhibits several desired characteristics compared to the state of the
art, as it is based on the Event Calculus, provides a language primitive for representing
event probabilities and includes a linear time algorithm for deriving (the probabilities of)
the maximal intervals of situations of interest. However, PIEC is not designed to operate
over data streams, yielding several redundant computations when reasoning in a stream-
ing setting. To address this issue, we proposed an extension of PIEC for reasoning over
noisy data streams, along with two bounded-memory variants, paving the way for high
predictive accuracy in scenarios where memory is scarce.

In Chapter 6, we proposed oPIEC, an extension of PIEC for handling noisy data streams.
oPIEC processes the input stream in data batches and stores in the ‘support set’ the min-
imal set of time-points that may be starting points of intervals including future time-points.
This way, oPIEC discards the remaining time-points, while guaranteeing correct maximal
interval computation throughout the stream. In oPIEC, the cost of maximal interval compu-
tation is linear to the size of the data batch and the size of the support set. We proved the
correctness of the support set updating and maximal interval computation algorithms of
oPIEC. In order to further support contemporary applications, we proposed two bounded-
memory versions of oPIEC, i.e., oPIECb and oPIECbd. Using a bounded-memory, the

P. Mantenoglou 160

Reasoning over Complex Temporal Specifications and Noisy Data Streams

size of the support set, and thus the cost of reasoning, remains constant as the stream
progresses. Our empirical analysis of oPIECb and oPIECbd showed that oPIECbd is, in
many cases, much more accurate than oPIECb, demonstrating the benefits of the sup-
port set maintenance algorithm of oPIECbd, which leverages composite event duration
statistics. Subsequently, we compared oPIECbd with three state-of-the-art computational
frameworks handling noisy data streams. Our results demonstrate that the interval-based
recognition of oPIECbd is often more accurate than the point-based recognition of state-
of-the-art frameworks, while oPIECbd reasons much more efficiently than these systems,
outperforming them by several orders of magnitude.

8.2 Future Work

We outline some directions for further research.

Explanations for Derived Situations. In order to facilitate transparency and fairness,
the derivations of a stream reasoning framework need to be explainable, i.e., have ex-
plicit justifications that can be easily understood by humans [Arrieta et al., 2020]. A good
explanation should have a causal structure, i.e., include a chain of inferences that leads
to the explained result, be minimal, i.e., omit irrelevant information, and be understand-
able, i.e., easy to follow by non-experts [Vidal, 2022]. The systems we proposed do not
provide justifications for their derivations, e.g., derived situations of interest are not ac-
companied by explanations. In a different line of work, we developed a visual analytics
framework that facilitates the exploration of the composite maritime activities detected
by RTEC using interactive visualisation, allowing for the identification of the features ca-
pable of distinguishing the detected activities from other types of behaviour by domain
experts [Andrienko et al., 2024]. This type of explanation, however, may be regarded as
too high-level and prone to human error, while lacking a causal structure. To avoid such
issues, explanations should have a formal foundation.

RTEC◦, RTEC→ and RTECA are based in logic programming, where query answers can
be justified via the rules and the substitutions used in their SLDNF proofs. However,
SLDNF proof trees are typically large and difficult to understand by non-experts. Cabalar
et al. [2014] proposed a semantics for logic programs where each atom of a model is
associated with a set of causal graphs, reflecting the ordered rule applications that can
be used to derive the atom. Causal graphs are compact and minimal, paving the way
for explainability. Explainability has also been studied in the context of ASP, where the
answer sets that satisfy a query cannot be used as its explanations, because they do not
have a causal structure [Pontelli et al., 2009; Arias et al., 2020; Cabalar et al., 2020]. We
would like to investigate explanation techniques for the derivations of RTEC◦, RTEC→ and
RTECA.

The problem of query explainability becomes more complex in probabilistic logic program-
ming, where the explanations of a query need also include information about the total
choices leading to possible worlds that model the query. The total choice with the high-
est probability is termed as the most probable explanation of the query, while its Viterbi

161 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

proof is equivalent to the minimal set of atomic choices that justify the query [Shterionov
et al., 2014]. Total choices—and sets of atomic choices in general—contain no causal
structure, while some of the included atomic choices may be irrelevant to the considered
query [Vidal, 2024]. Vidal has proposed two methodologies for explaining the derivations
of a probabilistic logic programming framework. In [Vidal, 2024], explanations are gen-
erated by a top-down proof procedure, while the choices made at each step of the proof
are expressed in a compact manner, aiding intelligibility. In [Vidal, 2022], explanations
are represented as programs, generated from the given query using unfolding transfor-
mations. We aim to develop similar query explanation methods in the context of oPIEC.

The frameworks we proposed support hierarchical temporal specifications, where it would
be useful to provide explanations with varying levels of detail with respect to the hierarchy.
Zieliński [2023] proposed a pattern specification language with a denotational semantics,
containing information about the sub-pattern instances that make up a detected situation in
the form of a tree. The structure of the tree reflects the hierarchy of the given specifications,
thus providing justifications over all possible levels of detail, facilitating the detection of
errors in pattern specifications with respect to their intended meaning. In the future, we
aim to propose similar denotational semantics for our proposed frameworks, paving the
way for explainable derivations in the presence of complicated hierarchies.

Comparison with automata-based formalisms. The languages of the frameworks we
proposed have a formal, declarative semantics that is based on logic programming, while
most frameworks for event recognition over data streams are automata-based [Giatrakos
et al., 2020]. For this reason, we would like to compare our proposed frameworks against
automata-based formalisms in terms of expressive power. Note, however, that the lan-
guages of several automata-based frameworks do not come with a clear semantics, which
makes them hard to understand and generalise [Grez et al., 2019].

Some recent works have proposed formal, denotational semantics for pattern specifica-
tion languages that can be executed in an automata-based framework [Grez et al., 2020;
Zielinski, 2023]. This type of semantics provides a clear meaning for each one of the
temporal operators of the language, paving the way for pattern compositionality, while
facilitating a comparison with other formalisms. Instead, we base our frameworks on a
model-theoretic semantics, where the intended meaning of the temporal specifications of
a domain is the perfect model of the corresponding locally stratified logic program (see
Section 2.1). The model of the program does not inform us about the expressive power
of the language regarding temporal operators, and thus it is not sufficient for a direct com-
parison against automata-based formalisms. For example, RTEC does not support event
sequencing, which is a commonly supported in automata-based systems [Artikis et al.,
2015; Giatrakos et al., 2020]. It would be interesting to compare the expressive power of
our extensions of RTEC against the expressivity of event sequencing operators. Towards
this goal, we aim to propose denotational semantics for our frameworks, and compare
their expressive power against automata-based formalisms, such as [Bucchi et al., 2022;
Zielinski, 2023].

Distribution and parallelisation techniques. Modern stream processing engines com-
monly feature distribution and parallelisation capabilities [Fragkoulis et al., 2024]. Gia-

P. Mantenoglou 162

Reasoning over Complex Temporal Specifications and Noisy Data Streams

trakos et al. [2020] argue that, in contemporary applications where large volumes of data
are being generated continuously and with high velocity, centralised, serial event pro-
cessing often becomes a bottleneck. To address this issue, the reasoning engine may be
distributed over multiple processing units that can work in parallel, improving the process-
ing rate of input events and reducing reasoning latency. In this setting, the computations
required to derive a situation of interest are broken up into parts, and each part is as-
signed to a different processing unit. Subsequently, the outputs of these units are merged
together, composing, e.g., the recognised instances of some situation.

dRTEC is a distributed version of RTEC where input items are allocated to processing
units based on the domain entities they refer to [Mavrommatis et al., 2016]. We would like
to develop similar entity-based parallelisation techniques for our proposed frameworks,
as well as investigate further parallelisation possibilities. For instance, the evaluations of
initiatedAt/terminatedAt rules at each time-point of the window are often independent, and
thus can be parallelised (see, e.g., rule schema (3.1)). Furthermore, in RTEC◦, RTEC→

and RTECA, the evaluation of each one of the initiatedAt/terminatedAt rules of an FVP at
some time-point can be assigned to a different processing unit, since the outcomes of
these evaluations are independent from each other. The latter type of a parallelisation
can only be employed in oPIEC when the initiatedAt/terminatedAt rules of the FVP have
disjoint bodies. Otherwise, deriving the probability of an initiation/termination of the FVP
by summing up the probabilities of the bodies of the corresponding initiatedAt/terminatedAt
is incorrect, i.e., we encounter the disjoint-sum problem (see Section 5.1).

Logical Inference in Tensor Spaces. As another future work direction, we aim to reduce
logical inference in our proposed frameworks into a set of algebraic operations on tensors,
providing an one-to-one mapping between the models of a logical theory and the solutions
of a system of tensor equations. Several approaches have been proposed for reducing
logical inference into algebraic operations, focusing on Datalog [Sato, 2017b], logic pro-
gramming [Sakama et al., 2021], and first-order logic [Sato, 2017a]. These approaches
argue for the benefits of such transformations. First, the resulting tensor operations may
be equivalent to a set of algebraic operations that can be computed in (low) polynomial
time. Sato et al. [2017b] showed that transforming a Datalog program into a set of linear
matrix equations and solving these equations is significantly more efficient than the tradi-
tional fixpoint evaluation of Datalog programs, as well as two Prolog engines using tabling
and two state-of-the-art ASP systems. Second, Sato et al. [2017a] argue that the solu-
tions of tensor operations may be approximated using tensor decomposition techniques,
further increasing the scalability of this method. Third, some problems, such as scientific
computations and neuro-symbolic reasoning, require both symbolic and algebraic com-
putations. Integrating these two types of computation, by mapping symbolic expressions
into vector spaces and solving the resulting tensor equations, is a promising approach for
these areas [Sakama et al., 2021]. Fourth, algebraic operations can often be executed in
parallel using GPUs, leading to further efficiency gains.

Tsilionis et al. [2024] proposed a formalisation of a point-based Event Calculus dialect
in tensor spaces. RTEC◦, RTEC→ and RTECA employ an interval-based Event Calcu-
lus dialect, combined with stream reasoning techniques, such as windowing and caching.

163 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

oPIEC uses an implementation of the Event Calculus in ProbLog, featuring probabilistic
facts as language primitives. Towards supporting the range of specifications of RTEC◦,
RTEC→ and RTECA, we would like to extend the work presented in [Tsilionis et al., 2024],
in order to map occurrences of durative events/situations into tensors. Moreover, to-
wards translating reasoning in oPIEC into tensor operations, we would like to express
event/situation probabilities as tensor elements and adjust the algebraic operators of [Tsil-
ionis et al., 2024] in order to guarantee correctness in the probabilistic setting. We believe
that transforming the symbolic computations of our systems into tensors operations could
lead to significant reasoning efficiency gains [Sato, 2017a; Sato, 2017b; Sakama et al.,
2021; Tsilionis et al., 2024].

Neuro-symbolic reasoning. Although neural networks typically exhibit high performance
in modern applications, they have several disadvantages, such as brittleness, the lack of
a formal semantics and result explainability, and the need for a large amount of training
data and time. On the other hand, symbolic representation and reasoning techniques are
commonly formal, interpretable and data-efficient. Neuro-symbolic artificial intelligence in-
volves the integration of symbolic techniques with neural networks, aiming towards highly
efficient and accurate frameworks that are semantically sound, explainable and trustwor-
thy [Yu et al., 2023; Marra et al., 2024]. Neuro-symbolic frameworks typically include a
neural layer, mapping sub-symbolic data into symbols, and a logic layer, modelling the
relationships and constraints among symbolic data. These frameworks are trained end-
to-end, using supervision on the output of the logic layer and adjusting the parameters
of both layers simultaneously through backpropagation. For example, DeepProbLog ex-
tends ProbLog with neural probabilistic facts, the probabilities of which are determined by
the outputs of neural networks. These neural networks are trained via backpropagation,
using supervision on the output of the ProbLog-based logic layer [Manhaeve et al., 2021].

The literature includes some neuro-symbolic frameworks for temporal reasoning. For in-
stance, DeepProbCEP employs an implementation of Prob-EC in DeepProbLog as its
logic layer [Vilamala et al., 2023]. DeepProbCEP lacks a build-in representation for du-
rative and ongoing situations, as well as optimised reasoning algorithms for event hierar-
chies. Apriceno et al. have proposed two neuro-symbolic frameworks that are based on
DeepProbLog and incorporate an Event Calculus dialect in their logic layer [Apriceno et
al., 2021; Apriceno et al., 2022]. These approaches are very limited in terms of expressive
power; e.g., they do not allow concurrent events.

The state-of-the-art neuro-symbolic frameworks do not support stream reasoning, while
the formulation of a semantics for neuro-symbolic approaches is still an open chal-
lenge [Marra et al., 2024]. To address these issues, we aim to integrate our proposed
stream reasoning techniques into neuro-symbolic frameworks. For instance, oPIEC is
based on probabilistic logic programming, which can be extended with neural probabilis-
tic facts [Manhaeve et al., 2021]. We would like to extend oPIEC with such facts, leading
to a neuro-symbolic framework with a formal, interval-based semantics, and optimisation
techniques, such as windowing and hierarchical event processing.

P. Mantenoglou 164

Reasoning over Complex Temporal Specifications and Noisy Data Streams

ABBREVIATIONS - ACRONYMS

AIS automatic identification system

ASP answer set programming

CE composite event

CER composite event recognition

CQL continuous query language

CWA closed world assumption

d-DNNF deterministic, decomposable negation normal form

DNF disjunctive normal form

ESL expressive stream language

FVP fluent-value pair

GKL-EC Generalised Kinetic Logic in the Event Calculus

oPIEC online Probabilistic Interval-based Event Calculus

oPIECb oPIEC with bounded memory and the score_range tactic

oPIECbd oPIEC with bounded memory and the interval duration statistics tactic

PIEC Probabilistic Interval-based Event Calculus

PMI probabilistic maximal interval

Prob-EC Probabilistic Event Calculus

RTEC Run-Time Event Calculus

RTEC◦ RTEC with cycles

RTEC→ RTEC with events with delayed effects

RTECA RTEC with Allen relations

SCC strongly connected components

SDE simple-derived event

SQL structured query language

WCC weakly connected components

WMC weighted model counting

165 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 166

Reasoning over Complex Temporal Specifications and Noisy Data Streams

APPENDIX A. PROOFS FOR PROPOSITIONS OF CHAPTER 3:
SEMANTICS

We prove that the event descriptions of RTEC◦, RTEC→ and RTECA are locally stratified
logic programs. First, we present temporal logic programs and describe the cycle-sum
test; if a temporal logic program passes the test, then it is locally stratified [Rondogiannis,
2001]. We outline a correspondence between event descriptions and temporal programs,
justifying the use of the cycle-sum test to prove local stratification for event descriptions.
Second, we demonstrate that RTEC◦ and RTEC→ event descriptions are locally stratified
by applying the cycle-sum test. Third, we show that RTECA event descriptions are locally
stratified, provided that there are no cyclic dependencies among the FVPs of statically
determined fluents.

A.1 The Cycle-Sum Test

We outline temporal logic programs and the cycle-sum test, following [Rondogiannis,
2001; Nomikos et al., 2005]. We adopt the definition of the ‘extended’ cycle-sum test,
described in [Nomikos et al., 2005], because it accepts a wider range of temporal pro-
grams that the original test presented in [Rondogiannis, 2001].

The syntax of temporal logic programs extends normal logic programs with temporal oper-
ators, i.e., first and next. A temporal reference is a sequence of temporal operators. nextk
denotes a sequence of k next operators. A canonical temporal reference is a reference
of the form first nextk , while an open temporal reference has the form nextk . More general
forms of temporal references (e.g., next2 first next first next3) are not interesting because the
operators appearing before the rightmost first operator are superfluous, and thus such tem-
poral references are prohibited. A temporal atom is an atom preceded by either a canon-
ical or an open temporal reference. Given a temporal atom a, the temporal reference of a
is denoted by time(a). A temporal clause has the form ‘h ← a1 , . . . , ak , not b1 , . . . , not bm ’,
where h, a1 , . . . , ak , b1 , . . . , bm are temporal atoms. A temporal program is a finite set of
temporal clauses.

We illustrate the meaning of first and next with the following temporal program, simulating
the operation of traffic lights:

first light(green). (A.1)
next light(amber)← light(green). (A.2)
next light(red)← light(amber). (A.3)
next light(green)← light(red). (A.4)

Rule (A.1) states that the traffic light is green at time-point 0 . Rules (A.2)–(A.4) describe
how the color of the traffic light changes from one time-point to the next one. For instance,
rule (A.4) expresses that, if the color of the traffic light is red at time-point T , then its color
becomes green at time-point T+1 .

167 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Suppose that P is a temporal logic program. The skeleton S of P is the propositional
program generated after removing all the arguments of the predicates in P . For example,
the skeleton of the temporal logic program described in rules (A.1)–(A.4) is the following
propositional program:

first light. (A.5)
next light← light. (A.6)

The cycle-sum test is a procedure for deciding whether a temporal logic program is locally
stratified; if a temporal logic program P passes the cycle-sum test, then P is a locally
stratified logic program. First, we define the temporal difference between two atoms in the
skeleton S of P and the cycle-sum graph of S . Then, we outline the cycle-sum test.

Definition 22 (Temporal Difference): Consider a temporal logic program P with a skele-
ton S . Suppose that h is the head of a clause in S that contains a body atom a. The
temporal difference dif (h, a) between h and a is defined as follows:

dif (h, a)=

k−m if time(h)= first nextk and time(a)= first nextm

k−m if time(h)= nextk and time(a)= nextm

k−m if time(h)= nextk and time(a)= first nextm

−∞ if time(h)= first nextk and time(a)= nextm
(A.7)

■

Intuitively, dif (h, a) denotes the lower bound on the number of time-points by which atom
a precedes atom h. In the case of −∞, we cannot establish such a lower bound because,
while atom h occurs k time-points after the first time-point, atom a occurs m time-points
after the current time-point, which may have an arbitrary temporal distance from time-point
k .

We describe the ‘extended’ version of the cycle-sum graph, as described in [Nomikos et
al., 2005].

Definition 23 (Cycle-Sum Graph): Consider a temporal logic program P with a skeleton
S . The cycle-sum graph of S is a directed, labeled multi-graph with self-loops CGS =
(V ,E). The set V of vertices of CGS is the set of predicate symbols appearing in S . The
set E of edges consists of triples (p, q , l), where p, q ∈ V and l ∈ (Z ∪ −∞) × {+,−}.
An edge (p, q , (w , s)) belongs to E if there exists a clause in S with an atom h as its head
and an atom a occurring in its body such that the predicate symbol of h is p, the predicate
symbol of a is q , w = dif (h, a), and s =− if a occurs negatively in the clause body, and
s =+, otherwise. ■
Definition 24 (Cycle-Sum Test): Consider a temporal logic program P with a skeleton
S . P passes the cycle-sum test if, in every strongly connected component of CGS that
contains a negatively signed edge, the following conditions hold:

1. The sum of weights across every cycle is non-negative.
2. Every cycle which has a zero sum of weights does not contain a negatively signed

edge. ■

P. Mantenoglou 168

Reasoning over Complex Temporal Specifications and Noisy Data Streams

A temporal program that passes the cycle-sum test is locally stratified [Rondogiannis,
2001]. For instance, the cycle-sum graph of the skeleton program described in rules
(A.5)–(A.6) is CGS =({light}, {(light, light, (1 ,+))}). This graph does not contain a nega-
tively signed edge, and thus the corresponding temporal logic program passes the cycle-
sum test.

Rondogiannis [2001] proposed the notion of the classical counterpart P∗ of a temporal
logic program P , and described a procedure for constructing P∗ based on P , by removing
the temporal operators first and next from clauses of P and adding to the predicates of P
an additional argument, expressing explicitly the concept of time. There is a one-to-one
correspondence between the models of P and P∗ (see Theorem 3.1 in [Rondogiannis,
2001]).

Event descriptions in RTEC◦, RTEC→ and RTECA do not feature operators first and next,
while they include a time argument for all their temporal predicates, such as happensAt
and initiatedAt. Therefore, such event descriptions can be viewed as the classical coun-
terpart of a temporal logic program. In order to construct the skeleton of an event descrip-
tion, we remove all arguments from the predicates of the program, except from predicate
time-stamps. Next, we transform the representation of temporal predicates with a time
argument into a representation that is based on the temporal operators first and next as
follows. First, we identify the earliest time-stamp in the rule, remove the time argument
of the corresponding predicate and consider that this time-stamp represents the current
time. Then, we remove the remaining predicate time-stamps and add nextk operators be-
fore the corresponding atoms, where k is the temporal distance between the time-stamp
of the atom and the current time. For example, consider the following formulation of the
law of inertia in the Event Calculus1:

holdsAt(F =V , T)←
initiatedAt(F =V , T − 1). (A.8)

holdsAt(F =V , T)←
holdsAt(F =V , T − 1),
not terminatedAt(F =V , T − 1).

(A.9)

holdsAt(F =V , T)←
holdsAt(F =V , T − 1),
not initiatedAt(F =V ′, T − 1), V ̸=V ′.

(A.10)

The skeleton S of the above program is:
next holdsAt← initiatedAt. (A.11)
next holdsAt← holdsAt, not terminatedAt. (A.12)
next holdsAt← holdsAt, not initiatedAt. (A.13)

All the edges of the cycle-sum graph CGS induced by S have weight 1 , as, for each clause
C in S , every body atom of C precedes the head of C by 1 time-point. As a result, the

1Note that rule-set (A.8)–(A.10) is equivalent to rule-set (2.1)–(2.4). This equivalence can be verified
by repeatedly expanding the recursive call to holdsAt in the first body condition of rules (A.9)–(A.10), until
reaching time-point 0 .

169 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

sum of weights across every walk in CGS is positive. Therefore, every program whose
skeleton comprises rules (A.11)–(A.13) passes the cycle-sum test, and thus is a locally
stratified logic program.

Given an event description PED in RTEC◦ (resp. RTEC→), we prove that RTEC◦ (RTEC→)
programs are locally stratified using the cycle-sum test as follows. First, we identify a set
of rules PR that is equivalent with the reasoning algorithms of RTEC◦ (RTEC→) in terms
of derivations. Second, we construct the skeleton of program PED ∪ PR and prove that it
passes the cycle-sum test. As a result, RTEC◦ and RTEC→ programs are locally stratified.

A.2 Proof of Proposition 2

Proposition (Semantics of RTEC◦): An event description in RTEC◦ is a locally stratified
logic program. ▲

Proof. We focus on the definition of simple fluents (see Definition 5); RTEC◦ does not
extend statically determined fluent definitions. We repeat the rule schema for initiatedAt
definitions in RTEC◦ (we omit the schema of terminatedAt rules because it is similar):

initiatedAt(F =V , T ′, T , T ′′)←
happensAt(E1 , T),T ′ ≤ T < T ′′[[,
[not] happensAt(E2 , T), . . . ,
[not] happensAt(Ei , T),
[not] holdsAt(F1 =V1 , T), . . . ,
[not] holdsAt(Fk =Vk , T),
atemporal_constraints]].

(A.14)

After simplifications, the skeleton of the rules defining simple fluents in RTEC◦ is:

initiatedAt← happensAt[[, [not] happensAt, [not] holdsAt]].
terminatedAt← happensAt[[, [not] happensAt, [not] holdsAt]]. (A.15)

Since all atoms in simple fluent definitions contain the same time argument, we did not
need to add any next operators in their skeleton. Moreover, the atemporal predicates in
the body of the rule depend only on background knowledge, and thus may not be part of
a cycle in the cycle-sum graph. Thus, we can omit these conditions without any effect on
our result.

RTEC◦ employs Algorithms 1 and 2 to perform Event Calculus-style reasoning in the pres-
ence of cyclic dependencies. These algorithms constitute an optimised implementation of
the law of inertia in the Event Calculus that employs incremental caching (see the proof of
Proposition 3 in Appendix B). As a result, Algorithms 1–2 and rules (A.8)–(A.10) are se-
mantically equivalent, i.e., they compute the same holdsAt atoms. Thus, we may analyse
the semantics of RTEC◦ in terms of rules (A.8)–(A.10).

An event description PED in RTEC◦ is a set of initiatedAt and terminatedAt rules following
schema (A.14), while PR contains rules (A.8)–(A.10). Rules (A.11)–(A.13) and rule-set

P. Mantenoglou 170

Reasoning over Complex Temporal Specifications and Noisy Data Streams

happensAt

initiatedAt

terminatedAt

holdsAt

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(1, +)

(1, -)

(1, +)

Figure A.1: The cycle-sum graph of an RTEC◦ program.

(A.15) comprise the skeleton S of PED ∪ PR. Figure A.1 presents the cycle-sum graph
CGS of S . The sum of weights across every cycle in CGS is positive. Therefore, PED ∪PR

passes the cycle-sum test, and thus an event description in RTEC◦ is a locally stratified
logic program.

A.3 Proof of Proposition 5

Proposition (Semantics of RTEC→): An event description in RTEC→ is a locally stratified
logic program. ▲

Proof. RTEC→ extends the syntax of simple fluent definitions, by allowing future initiations
of FVPs of simple fluents (see Definition 11). In Section 3.3.4, we outlined a set of rules
that can be used for evaluating future initiations of FVPs. We repeat these rules below:

initiatedAt(F =V ′,T+R)←
fi(F =V ,F =V ′,R),
initiatedAt(F =V ,T),
not cancelled(F =V ,T ,T+R).

(A.16)

cancelled(F =V ,T ,T+R)←
brokenBetween(F =V ,T ,T+R).

(A.17)

cancelled(F =V ,T ,T+R)←
p(F =V),
initiatedBetween(F =V ,T ,T+R).

(A.18)

RTEC→ reasons over events with delayed effects using Algorithms 3–6. These algorithms
are an optimised implementation of rules (A.16)–(A.18) with windowing and incremental
caching. Since Algorithms 3–6 and rules (A.16)–(A.18) lead to the same derivations (see
the proof of Proposition 6 in Appendix B), we focus on rules (A.16)–(A.18) for this proof.

171 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

initiatedAt terminatedAt

(R-1, -)

...

(2, -)

(1, -)

(R, +)

(1, -)
...

(R-1, -)

Figure A.2: The cycle-sum graph of an RTEC→ program.

An event description PED in RTEC→ contains simple and statically determined fluent def-
initions, following the syntax of RTEC, as well as fi and p facts. The reasoning procedure
of RTEC→ can be modelled using (A.16)–(A.18), in conjunction with the law of inertia in
the Event Calculus, as expressed in rules (A.11)–(A.13). It suffices to complement the
proof we provided in Section A.2 with a proof outlining that rules (A.16)–(A.18) pass the
cycle-sum test. In order to generate the skeleton of rules (A.16)–(A.18), we need to sub-
stitute the body conditions with predicates brokenBetween and initiatedBetween, which do
not have a time-stamp argument, based on the following definitions:

initiatedBetween(F =V ,T ,T+R)← initiatedAt(F =V ,T+1).

...
initiatedBetween(F =V ,T ,T+R)← initiatedAt(F =V ,T+R−1).
brokenBetween(F =V ,T ,T+R)← terminatedAt(F =V ,T+1).

...
brokenBetween(F =V ,T ,T+R)← terminatedAt(F =V ,T+R−1).
brokenBetween(F =V ,T ,T+R)← initiatedAt(F =V ′,T+1),V ̸=V ′.

...
brokenBetween(F =V ,T ,T+R)← initiatedAt(F =V ′,T+R−1),V ̸=V ′.

(A.19)

We combine rules (A.16)–(A.18) with rule-set (A.19), and generate the following skeleton

P. Mantenoglou 172

Reasoning over Complex Temporal Specifications and Noisy Data Streams

program S :
nextR initiatedAt←
initiatedAt,
not next1 initiatedAt,

...
not nextR−1 initiatedAt,
not next1 terminatedAt,

...
not nextR−1 terminatedAt.

(A.20)

Figure A.2 presents the cycle-sum graph CGS induced by S . The weights of all edges in
CGS are positive, and thus all programs with skeleton S pass the cycle-sum test. More-
over, the cycle-sum graph generated as the combination of the graphs in Figures A.1 and
A.2 also passes the cycle-sum test, indicating that the addition of future initiations in event
descriptions preserves local stratification. As a result, an event description in RTEC→ is
a locally stratified logic program.

A.4 Proof of Proposition 9

Proposition (Semantics of RTECA): An event description in RTECA is a locally stratified
logic program. ▲

Proof. RTECA extends the syntax of RTEC by allowing instances of the allen predicate in
the bodies of statically determined fluent definitions. The introduction of the allen predicate
in the body of a rule does not lead to a new dependency among the ground atoms of
happensAt, initiatedAt, terminatedAt, holdsAt and holdsFor predicates. Moreover, RTECA,
following RTEC, does not allow cyclic dependencies among the rules defining statically
determined fluents. As a result, a local stratification of an event description in RTECA can
be constructed by following bottom-up the dependency graph of RTECA (see Proposition
1 and [Artikis et al., 2015]).

173 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

P. Mantenoglou 174

Reasoning over Complex Temporal Specifications and Noisy Data Streams

APPENDIX B. PROOFS FOR PROPOSITIONS OF CHAPTER 3:
CORRECTNESS AND COMPLEXITY

In the proofs concerning RTEC◦, RTEC→ and RTECA, we assume that all operations in-
herited from RTEC, such as the evaluation of initiatedAt/terminatedAt rules and the pairing
of initiation and termination points, are correct.

B.1 Proof of Proposition 3

Proposition (Correctness of RTEC◦): RTEC◦ computes all maximal intervals of the
FVPs of an event description with cyclic dependencies, and no other interval. ▲

Proof. First, we demonstrate that the problem of maximal interval computation reduces
to the problem of showing the correctness of holdsAt(F =V ,T) query computation for
FVPs F =V that are in a cycle C . Second, we prove that holdsAt(F =V ,T) is evaluated
correctly at every time-point T of the first window (q1−ω, q1] of the stream. To do this, we
use an inductive proof on T . Third, we generalise the proof for all subsequent windows.
We use an inductive proof which states that if holdsAt(F =V ,T) is evaluated correctly
at every time-point in the first k windows of the stream, then holdsAt(F =V ,T) is also
evaluated correctly at every time-point in the k+1 -th window of the stream. Thus, we
have proven that holdsAt(F =V ,T), where F =V is part of a cycle, is evaluated correctly
at every time-point of the stream. Based on our reduction, it follows that RTEC◦ computes
all maximal intervals of the FVPs of an event description with cyclic dependencies, and
no other interval.

Reduction to holdsAt(F =V ,T). In order to prove that RTEC◦ computes the maximal
intervals of Fi =Vi , where 1 ≤ i ≤ n, correctly, we need to show that RTEC◦ computes
initiatedAt(Fi =Vi ,T) iff T ∈ w is an initiation point of Fi =Vi , and terminatedAt(Fi =Vi ,T)
iff T ∈ w is a termination point of Fi =Vi . Afterwards, correct maximal interval computa-
tions follows, since the pairing of initiation and termination points is inherited from RTEC,
and thus we assume its correctness. initiatedAt(Fi =Vi ,T) and terminatedAt(Fi =Vi ,T)
are evaluated using domain-specific rules, following a 4-arity variant of schema (3.1). If
such a rule contains a holdsAt(Fj =Vj ,T) condition, where 1 ≤ j ≤ n and j ≠ i , i.e.,
Fj =Vj is an FVP in cycle C , then RTEC◦ evaluates this condition using Algorithms 1 and
2. For the remaining conditions, RTEC◦ follows RTEC, and thus we assume that these
conditions are evaluated correctly. Thus, to prove the correctness of evaluating rules with
head initiatedAt(Fi =Vi ,T) or terminatedAt(Fi =Vi ,T) in RTEC◦, it suffices to show that
holdsAt(Fj =Vj ,T) conditions, where Fj =Vj is different from and in the same cycle as
Fi =Vi , are evaluated correctly.

Proof for the first window of the stream. Suppose that the first window is (q1−ω, q1]
and that we have a cycle C in the dependency graph. The base of our induction relies
on the common assumption in stream reasoning that the values of fluents at the start

175 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

of the stream, if any, are known. Thus, the truth values of holdsAt(F =V , q1−ω+1) are
given for all FVPs F =V ∈ C . For the inductive step, we suppose that the truth values
of holdsAt(F ′ =V ′,T ′), for all F ′ =V ′ ∈ C and q1−ω < T ′ < T ≤ q1−ω, are evaluated
correctly, and prove that the query holdsAt(F =V ,T), where F =V ∈ C , is evaluated
correctly. RTEC◦ employs Algorithm 1, and moves to lines 8–11. This is because the truth
value of holdsAt(F =V ,T) is not cached at this point, and, since we have the initial values
of all FVPs in C , there is certainly some time-point TlCP before T where the truth value
of holdsAt(F =V ,TlCP) has been evaluated and cached. Since TlCP < T , based on our
inductive assumption, it holds that the cached tuple (TlCP ,TvallCP) has been evaluated
correctly, i.e., TvallCP =+ if F =V holds at TlCP , and TvallCP =− if F =V does not hold
at TlCP . Then, RTEC◦ resolves holdsAtEC(F =V ,TlCP ,T ,TvallCP) using Algorithm 2.

We need to show that, given a correct input tuple (TlCP ,TvallCP), Algorithm 2 returns true
if F =V holds at T , and false if F =V does not hold at T . To do this, we prove that
Algorithm 2 follows the law of inertia of the Event Calculus, according to which:

1. If there is no initiation/termination of F =V in [TlCP ,T), then F =V holds at T iff
F =V holds at TlCP , i.e., the truth value TvallCP persists up to time-point T .

2. If there is at least one initiation of F =V in [TlCP ,T) and no terminations, then F =V
holds at T .

3. If there is at least one termination of F =V in [TlCP ,T) and no initiations, then F =V
does not hold at T .

4. If there is at least one initiation and at least one termination of F =V in [TlCP ,T), then
F =V holds at T if the last initiation of F =V in [TlCP ,T) is after the last termination
of F =V in [TlCP ,T), and F =V does not hold at T in the opposite case.

Suppose that there is no initiation/termination of F =V in [TlCP ,T) (case 1). Then, Al-
gorithm 2 returns true if TvallCP =+ (see lines 2 and 5), and false if TvallCP =− (see
lines 6 and 9). In case 2 (resp. 3), Algorithm 2 returns true (false) regardless of the
value of TvallCP . In case 2, e.g., where we have initiations of F =V and no termina-
tions, Algorithm 2 returns true if TvallCP =+ (see lines 2 and 5), and calls recursively
holdsAt(F =V ,Ti+1 ,T ,+), where Ti is an initiation point of F =V , if TvallCP =−. In
the latter case, the recursive call returns true, as we have TvallCP =+ and no termina-
tions of F =V in [Ti+1 ,T) (lines 2–5). In case 4, where we have both initiations and
terminations of F =V in [TlCP ,T), suppose that Ti and Tb are, respectively, the last
initiation and the last termination of F =V in [TlCP ,T). If TvallCP =+ and Ti > Tb,
then Algorithm 2 invokes holdsAtEC(F =V ,Tb+1 ,T ,−) recursively (lines 2–5). Now
we have TvallCP =−, and, since Ti > Tb, we have an additional recursive call to
holdsAtEC(F =V ,Ti+1 ,T ,+) (lines 6–9). This last recursive call returns true, because
there are no terminations of F =V in [Ti+1 ,T). If TvallCP =+ and Tb > Ti , then Al-
gorithm 2 calls holdsAtEC(F =V ,Tb+1 ,T ,−), which returns false, because there are no
initiations of F =V in [Tb+1 ,T). In both scenarios, the truth value of holdsAt(F =V ,T)
that is computed by Algorithm 2 follows the last initiation/termination of F =V . The proofs
for TvallCP =− are symmetrical. Therefore, in all cases, Algorithm 2 is consistent with the
law of inertia.

It remains to show that the initiatedAt and brokenAt queries invoked in Algorithm 2 are eval-

P. Mantenoglou 176

Reasoning over Complex Temporal Specifications and Noisy Data Streams

uated correctly. A holdsAtEC(F =V ,TlCP ,T ,TvallCP) query may only lead to the evalu-
ation of an initiatedAt/brokenAt query if TlCP < T (see line 1). The bodies of the rules
defining brokenAt(F =V ,TlCP ,Tb ,T) and initiatedAt(F =V ,TlCP ,Ti ,T) may only contain
holdsAt predicates with time-stamp Tb and Ti (see rule schema (3.1)). Thus, since we
have TlCP ≤ Tb < T and TlCP ≤ Ti < T , it follows from our inductive assumption that
these holdsAt predicates are evaluated correctly. Thus, the brokenAt and initiatedAt queries
that are invoked in Algorithm 2 are evaluated correctly.

We have proven that, when evaluating holdsAt(F =V ,T), the last cached tuple
(TlCP ,TvallCP) before T is correct. Moreover, RTEC◦ follows the law of inertia when com-
puting holdsAt(F =V ,T) based on (TlCP ,TvallCP), and all initiatedAt and brokenAt queries
that are required to apply the law of inertia in this computation are evaluated correctly. It
follows that RTEC◦ evaluates holdsAt(F =V ,T) correctly, according to the law of inertia
in the Event Calculus.

Generalisation to the i -th window of the stream. We generalise our proof for the i -th
window (qi−ω, qi]. In order to prove that holdsAt(F =V ,T) is evaluated correctly at every
time-point in (qi−ω, qi], we use the same induction on T as we did for the first window of
the stream. Although the inductive step can be proven in exactly the same way, in this
case we cannot assume that the values of all FVPs in cycle C at the first time-point of the
window are known. In order to prove that holdsAt(F =V , qi−ω+1) is evaluated correctly
for F =V ∈ C , we use an inductive proof on the sequence of the windows of the stream.

We have proven that holdsAt(F =V ,T) is evaluated correctly for all time-points in the
first window (inductive base). For the inductive step, we assume that holdsAt(F =V ,T)
is evaluated correctly for all time-points in the first i−1 windows of the stream, and
prove that holdsAt(F =V ,T) is evaluated correctly at the first time-point of the i -th win-
dow (qi−ω, qi] of the stream. According to the law of inertia, holdsAt(F =V , qi−ω+1) is
true iff initiatedAt(F =V , qi−ω) holds, or holdsAt(F =V , qi−ω) and it is not the case that
terminatedAt(F =V , qi−ω). The time-point qi−ω is in the i − 1 -th window, and thus the
truth value of holdsAt(F =V , qi−ω) is known. Moreover, based on rule schema (3.1), the
initiation and termination points of F =V in the i−1 -th window are also known. Thus, the
truth value of holdsAt(F =V , qi−ω+1) is evaluated correctly for all F =V ∈ C .

Therefore, we have a valid inductive base for proving that holdsAt(F =V ,T) is evalu-
ated correctly at every time-point in (qi−ω, qi], and thus proceed with the same inductive
proof as in the same first window of the stream. We have proven that RTEC◦ evaluates
holdsAt(F =V ,T) correctly at every time-point of the stream, and that this fact implies that
RTEC◦ computes the maximal intervals of the FVPs in an event description with cyclic de-
pendencies, and no other interval.

B.2 Proof of Proposition 4

Proposition (Complexity of RTEC◦): The cost of evaluating the maximal intervals of an
FVP whose definition includes cyclic dependencies is O(ωk), where ω is the size of the

177 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

window and k is the cost of evaluating all the initiatedAt/terminatedAt rules of an FVP at a
given time-point without cyclic dependencies (see [Artikis et al., 2015] for an estimation of
k). □

Proof. Suppose that the window is (qi−ω, qi] and that FVP F =V is in a cycle C of the
dependency graph. In order to compute the maximal intervals of F =V , RTEC◦ computes
the initiation and termination points of F =V by querying initiatedAt and terminatedAt for
each FVP in cycle C and at each time-point in (qi−ω, qi], following an ascending time-point
order. The bodies of the rules defining initiatedAt(F =V ,T) and terminatedAt(F =V ,T)
contain happensAt predicates, holdsAt predicates for FVPs with level lower than the level
of F =V , and holdsAt predicates for FVPs that are in cycle C . The cost of evaluating
happensAt predicates and holdsAt predicates for FVPs with level lower than the level of
F =V is bounded by O(k). holdsAt predicates for FVPs that are in cycle C are evaluated
using Algorithm 1 of RTEC◦.

We prove that the cost of evaluating initiatedAt(F =V ,T) is O(k) using an induc-
tive proof on T . For the inductive base, we show that the cost of evaluating
initiatedAt(F =V , qi−ω+1) is O(k). Since the truth values of all holdsAt(F ′ =V ′, qi−ω+1)
predicates, where F ′ =V ′ ∈ C , are known and cached (see the proof of Proposition 3),
each such body condition of a rule that matches initiatedAt(F =V , qi−ω+1) can simply be
fetched from memory in constant time. For each holdsAt(F ′ =V ′, qi−ω+1) query, RTEC◦
retrieves the cached tuple (qi−ω+1 ,+/−) from memory (see lines 4–7 of Algorithm 1).
Such a rule may include at most r−1 holdsAt conditions about FVPs in cycle C , where r is
the length of C . As a result, the cost of evaluating initiatedAt(F =V , qi−ω+1) is O(k + r),
where r can be absorbed by k since the number of fluents f of the event description is a
factor of k and f ≤ k . Therefore, the cost of evaluating initiatedAt(F =V , qi−ω+1) isO(k).

For the inductive step, we assume that the conditions of initiatedAt(F =V ,T ′), at
each time-point T ′ < T , are known and cached, leading to a cost of eval-
uating initiatedAt(F =V ,T ′) that is O(k). We prove that the cost of evaluating
initiatedAt(F =V ,T) is also O(k). To compute initiatedAt(F =V ,T), we may need to eval-
uate holdsAt(F ′ =V ′,T) queries, where F ′ =V ′ ∈ C . Based on the ascending time
processing order of RTEC◦, the cache contains the truth values of holdsAt(F ′ =V ′,T ′)
at each time-point T ′, where T ′ < T . RTEC◦ retrieves the cached tuple that is
closest to T , i.e., (T−1 ,PrevVal), and invokes holdsAtEC(F ′ =V ′,T−1 ,T ,PrevVal)
(see lines 4–11 of Algorithm 1). According to Algorithm 2, the evaluation of
holdsAtEC(F ′ =V ′,T−1 ,T ,PrevVal) involves the computation of brokenAt(F =V ,T−1) if
PrevVal =+, or the computation of initiatedAt(F =V ,T−1) if PrevVal =−. In both cases,
the truth values of all the required holdsAt conditions that involve an FVP in cycle C are
present in the cache. As a result, the cost of evaluating initiatedAt(F =V ,T) is O(k).

We have proven that the cost of evaluating initiatedAt(F =V ,T) is O(k) at each time-
point T in the window. Analogously, we may prove that the evaluation cost of
terminatedAt(F =V ,T) is also O(k). Thus, the cost of computing all the initiation and
termination points of F =V in window (qi−ω, qi] is O(ωk). The cost of maximal interval
computation is bounded by O(ω), and thus the overall cost of computing the maximal

P. Mantenoglou 178

Reasoning over Complex Temporal Specifications and Noisy Data Streams

intervals of an FVP whose definition includes cyclic dependencies is O(ωk).

B.3 Proof of Proposition 6

We show that Proposition 6 holds for an FVP F =V , such that fi(F =V ,F =V ′,R). First,
we prove that RTEC→ transfers the attempt events between windows that are required for
correct FVP interval computation, and no other attempt event (see Lemma B.3). Second,
we show that RTEC→ computes all future initiations of F =V ′, and no other future initia-
tion (see Lemma 5). Third, we demonstrate that, at the time of constructing the maximal
intervals of F =V , lists IP [F =V] and TP [F =V] contain the initiations and terminations
of F =V , and no other point, completing the proof for Proposition 6.

Lemma (Correctness of transferring attempt events): RTEC→ transfers the attempt
events between windows that are required for correct FVP interval computation, and no
other attempt event. ▲

Proof. We prove that, at query time qi , RTEC→ selects the attempt event that may mark
a future initiation of F =V ′, if any, as specified in the definition of fi (see Definition 11).
According to this definition, we have a future initiation of F =V ′ at Tatt iff there is an
initiation of F =V at Tatt−R and there is no cancellation point of the future initiation of
F =V ′ between Tatt−R and Tatt . Given window size ω, we will prove that RTEC→ derives
an attempt event att iff its time-stamp Tatt satisfies the following conditions:

1. Tatt > qi−ω.
2. Tatt−R ≤ qi−ω.
3. F =V is initiated at Tatt−R.
4. The future initiation of F =V ′ is not cancelled between Tatt−R and the start of the

window qi−ω+1 .
5. The future initiation of F =V ′ is not cancelled between qi−ω+1 and Tatt by a future

initiation of F =V ′ that was generated before qi−ω+1 .

Conditions 1 and 2 express that the attempt att falls inside the current window, while the
initiation of F =V that generated att is before the window. If this initiation of F =V were
also inside the window, then we would be able to perform the computation at qi without
transferring att . Conditions 3 and 4 express that the future initiation of F =V ′ at Tatt

was staged and not cancelled up to qi−ω+1 . The information before qi−ω+1 does not
change at the qi , and thus, if conditions 3 and 4 were violated at qi−1 , they are still violated
at qi . Condition 5 expresses that we should not select attempt event att if there is another
attempt that satisfies conditions 1–4 and cancels the future initiation of F =V ′ at Tatt . This
condition addresses the cases where we have several initiations of F =V at T1 , . . .Tn ,
where Tn−T1 < R, and the future initiations of F =V ′ may not be postponed. In such
cases, only the attempt generated by the initiation of F =V at T1 is selected, because the
remaining ones will be cancelled, at the latest, by the future initiation of F =V ′ at T1+R.

RTEC→ derives the attempt event that should be kept using Algorithm 5. Suppose that the

179 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

output Tatt of Algorithm 5 is not null , i.e., Tatt is the time-stamp of an attempt event. If the
future initiations of F =V ′ may be postponed, then we have Tatt > qi−ω and Tatt−R ≤
qi−ω (see line 4 of Algorithm 5). If the future initiations of F =V ′ may not be postponed,
then we have Tatt > qi−ω, while Tatt−R coincides with the starting point of an interval that
contains the start of the window (see lines 8 and 10), and thus Tatt−R ≤ qi−ω. In both
cases, conditions 1 and 2 hold for Tatt .

Next, we prove that F =V is initiated at Tatt−R. Tatt is one of the time-stamps that were
cached at previous query time by Algorithm 6 of RTEC→. If the future initiations of F =V ′

may be postponed, then Algorithm 6 caches all time-points T+R, such that T is an initi-
ation point of F =V . Otherwise, if the future initiations of F =V ′ may not be postponed,
then Algorithm 6 caches all time-points Ts+R, such that Ts is the starting point of an inter-
val of F =V . Since all starting points of intervals of F =V are initiation points of F =V ,
it holds that, if Algorithm 6 caches time-point Ts+R, then F =V is initiated at Ts . As a
result, all time-stamps in list Attempts [F =V] of Algorithm 5 are R time-points after an
initiation of F =V . Since the time-stamp Tatt computed by Algorithm 5 is one of the items
of list Attempts [F =V], Tatt−R is an initiation point of F =V , and thus condition 3 holds.

Tatt satisfies conditions 1–3. We prove that RTEC→ derives an attempt att with time-
stamp Tatt iff the future initiation of F =V ′ is not cancelled between Tatt−R and the start
of the window qi−ω+1 (condition 4), and it is not cancelled between qi−ω+1 and Tatt

by a future initiation of F =V ′ that was generated before qi−ω+1 (condition 5). Assume
that RTEC→ derives attempt att . Then, Tatt is computed by Algorithm 5, meaning that
there is an interval [Ts ,Tf) of F =V that contains qi−ω+1 (see line 2 of Algorithm 5). The
existence of interval [Ts ,Tf) implies that F =V is not ‘broken’ between Ts and qi−ω+1 ,
as, otherwise, [Ts ,Tf) would have been segmented. If the future initiations of F =V ′ may
not be postponed, then Tatt−R=Ts (see line 10). Therefore, the future initiation of F =V ′

is not cancelled betweenTatt−R and qi−ω+1 , i.e., condition 4 holds, and it is not cancelled
between qi−ω+1 and Tatt by a future initiation of F =V ′ that was induced earlier, because
such a future initiation would have been cancelled before interval [Ts ,Tf), i.e., condition
5 holds. Otherwise, if the future initiations of F =V ′ may be postponed, then Tatt−R
coincides with the last initiation of F =V in [Ts , qi−ω+1) (see lines 5–6). Thus, F =V is
not ‘broken’ between Tatt−R and qi−ω+1 , i.e., condition 4 holds, and earlier initiations of
F =V do not cancel the future initiation of F =V ′ at Tatt , as such earlier initiations would
be postponed by the initiation of F =V at Tatt−R, i.e., condition 5 holds. Therefore, if
RTEC→ computes an attempt event att , then its time-stampt Tatt satisfies conditions 4
and 5.

Assume that Tatt satisfies conditions 1–5. Based on condition 4, F =V is not ‘broken’
between Tatt−R and qi−ω+1 , and thus there is a maximal interval [Ts ,Tf) of F =V that
contains the start of the window qi−ω+1 . If the future initiations of F =V ′ may not be
postponed, then RTEC→ computes Ts+R. Since F =V holds continuously in [Ts ,Tf) and
in [Tatt−R,Tf), and Ts is the starting point of a maximal interval, it holds that Tatt−R ≥ Ts .
If Tatt−R > Ts , then, since the future initiations of F =V ′ may not be postponed, the
future initiation of F =V ′ that was induced at Ts will cancel the future initiation of F =V ′

at Tatt , meaning that Tatt does not satisfy condition 5, which is a contraction. Therefore,

P. Mantenoglou 180

Reasoning over Complex Temporal Specifications and Noisy Data Streams

we have Tatt−R=Ts , and thus RTEC→ derives time-point Tatt . If the future initiations of
F =V ′ may be postponed, then RTEC→ computes the time-stamp T of the last attempt of
initiating F =V ′ that was induced before qi−ω+1 . Earlier attempts of initiating F =V ′ are
cancelled, because the corresponding future initiations of F =V ′ are postponed by the
initiation of F =V that generated the attempt at T . Thus, these attempts do not satisfy
condition 4, and the attempt event at T is only attempt that satisfies conditions 4 and 5.
As a result, T coincides with Tatt . Therefore, if Tatt satisfies conditions 1–5, then RTEC→

derives the attempt event att that takes place at Tatt .

We proved that RTEC→ derives an attempt event att iff its time-stamp Tatt satisfies con-
ditions 1–5.

Lemma 5 (Correctness of future initiation computation): Given fi(F =V ,F =V ′,R),
RTEC→ computes all future initiations of F =V ′, and no other future initiation. ▲

Proof. We start by presenting the proof for an acyclic cd-component containing the FVPs
with fluent F ; moreover, we assume that the vertex of FVP F =V has no incoming f-
edges, i.e., there are no future initiations of F =V . We will relax these assumptions in
subsequent steps of the proof.

First, we prove that, at the time of evaluating the future initiations of F =V ′ based on
fi(F =V ,F =V ′,R) (see line 7 of Algorithm 3), the list IP [F =V] of cached initiations
of F =V contains all initiations of F =V , and no other points, and the list TP [F =V]
of cached terminations of F =V contains all terminations of F =V , except from those
stemming from future initiations of F =V ′, and no other points.

Correctness of IP [F =V]. IP [F =V] contains the correct immediate initiations of F =V ,
because RTEC→ evaluated these initiations earlier, in line 4 of Algorithm 3, using an op-
eration inherited from RTEC, which we have assumed to be correct. Since there are no
future initiations of F =V , we conclude that IP [F =V] contains all initiations of F =V ,
and no other points.

Correctness of TP [F =V]. TP [F =V] contains the correct immediate terminations of
F =V , because these terminations were computed at an earlier step by RTEC (see line
5 of Algorithm 3). TP [F =V] does not contain future terminations of F =V that stem
from future initiations of an FVP F =Vj , where Vj ̸=V ′, as such future initiations do not
terminate F =V . Suppose that we have fi(F =Vi ,F =Vj ,R

′), where Vi ̸=Vj ̸=V and
Vj ̸=V ′. (We assume that Vi ̸=V without loss of generality, because there may be, at
most, one fi with F =V as its first argument. If there were a fact fi(F =V ,F =V ′′,R′′),
where R′′ > R, then such a fact would never result in a future initiation of F =V ′′.) In
order for a future initiation of F =Vj to not get cancelled, F =Vi must hold up to the time-
point of the future initiation. Since fluents have at most one value at a time, it is not possible
for F =V to hold at the time of the future initiation of F =Vj . Therefore, a future initiation
of F =Vj cannot terminate F =V . As a result, the future initiations of F =V ′ are the only
future initiations of F that may terminate F =V . Therefore, the only terminations of F =V
that are missing from TP [F =V], if any, are the ones stemming from future initiations of
F =V ′.

181 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Second, we prove that, given lists IP [F =V] and TP [F =V], RTEC→ derives all the future
initiations of F =V ′, and no other time-points. According to Definition 5, there is a future
initiation of F =V ′ based on fi(F =V ,F =V ′,R) at T+R iff F =V is initiated at T and
there is no cancellation point of the future initiation of F =V ′ between T and T+R.

Correctness of future initiation evaluation at Tatt . Suppose that there is a cached attempt
event att with time-stampt Tatt . RTEC→ computes a future initiation of F =V ′ at Tatt iff
there is no cached cancellation point of the future initiation of F =V ′ between the start
of the window qi−ω+1 and Tatt (see lines 3–4 of Algorithm 4). Since this is the earliest
potential future initiation of F =V ′ at qi , TP [F =V] contains all the termination points of
F =V that are between qi−ω+1 and Tatt , and no other points. Therefore, the cache
contains all cancellation points of future initiations of F =V ′ between qi−ω+1 and Tatt ,
and no other points. Moreover, there is no cancellation point between Tatt−R and Tatt that
was generated before qi−ω+1 (see Lemma B.3). Therefore, RTEC→ computes a future
initiation at Tatt iff there is no cancellation point between Tatt−R and Tatt .

Correctness of future initiation evaluation after Tatt . Suppose that T1 , . . . ,Tk are the tem-
porally sorted initiations of F =V . We show that RTEC→ computes a future initiation of
F =V ′ at Ti+R, where 1 ≤ i ≤ k , iff the future initiation of F =V ′ is not cancelled be-
tween Ti and Ti+R. For the base case, according to lines 5–7 of Algorithm 4, RTEC→

computes a future initiation of F =V ′ at T1+R iff there is no cancellation point between
T1 and T1+R. Note that there are no initiations of F =V before T1 , and thus no future
initiations of F =V ′ before T1+R. In other words, the cache has all cancellation points
of the future initiation of F =V ′ between T1 and T1+R. Next, assume that RTEC→ has
evaluated correctly the future initiations of F =V ′ up to Tn−1+R, where 1 < n ≤ k . Since
RTEC→ caches the future initiations that it derives (line 7 of Algorithm 4), the cache con-
tains all cancellation points of the future initiations of F =V ′ up to Tn−1+R. As a result,
RTEC→ computes a future initiation of F =V ′ at Tn+R iff there is no cancellation point
between Tn and Tn+R.

Third, we generalise the proof for the case where the vertex of F =V has incoming f-
edges, i.e., we may have future initiations of F =V . In this case, we may have additional
initiations of F =V , and thus we have to re-establish the correctness of IP [F =V].

Correctness of IP [F =V] with future initiations of F =V . We consider the case where the
vertex of F =V has incoming f-edges, i.e., we may have future initiations of F =V , and
prove that IP [F =V] contains all initiations of F =V , and no other points. Suppose that
we have n facts fi(F =Vi ,F =V ,Ri), where 1 ≤ i ≤ n, and all values Vi are pairwise
different. Since there are no cycles in the dependency graph, RTEC→ processes FVPs
F =V1 , . . . ,F =Vn before F =V (see Definition 18). For each FVP F =Vi , if we may
not have future initiations of F =Vi , then RTEC→ evaluates the future initiations of F =V
based on fi(F =Vi ,F =V ,Ri) correctly, as proven above, and stores them in list IP [F =V]
(see lines 7 and 9 of Algorithm 3). Otherwise, if there are some fi facts defining F =Vi ,
then, based on the acyclicity of the cd-component, we may use an inductive proof on the
vertices of the cd-component, in order to show that the future initiations of F =V based
on fi(F =Vi ,F =V ,Ri) are derived correctly. As a result, when processing FVP F =V ,
IP [F =V] contains all the future initiations of F =V .

P. Mantenoglou 182

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Algorithm 13 initiatedAtCyclic(F =V ,T)

Input: qi , ω,AttemptOfFVP .
Output: true/false.

1: if T ≤ qi−ω or T > qi then return false
2: if cachedInit(F =V ,T ,+) then return true
3: if cachedInit(F =V ,T ,−) then return false
4: for each body in bodiesOf(initiatedAt(F =V ,T)) do
5: if sat(body) then
6: updateCache(cachedInit(F =V ,T ,+))
7: return true
8: for each fi(F =V d ,F =V ,R) do
9: if T==AttemptOfFVP [F =V d] then
10: if not cancelledCyclic(F =V d , qi−ω,T) then
11: updateCache(cachedInit(F =V ,T ,+))
12: return true
13: if T > qi−ω+R and initiatedAtCyclic(F =V d ,T−R) then
14: if not cancelledCyclic(F =V d ,T−R,T) then
15: updateCache(cachedInit(F =V ,T ,+))
16: return true
17: updateCache(cachedInit(F =V ,T ,−))
18: return false

Fourth, we generalise the proof for the case where we have a cd-component with cycles.
In this case, we show that future initiation evaluation is reduced to initiatedAt/terminatedAt
rule evaluations, which are inherited from RTEC, in conjunction with caching intermediate
derivations.

Correctness of future initiation evaluation with cycles. Suppose that there is a cycle of
f-edges that includes f-edge (vF =V , vF =V ′). In this case, RTEC→ does not employ Algo-
rithm 4; instead, it uses Algorithm 13 to evaluate the initiations of all FVPs in the cycle.
When evaluating the future initiations of F =V ′, Algorithm 13 does not assume that all
initiations of F =V and all cancellation points of future initiations of F =V ′ have been
evaluated and cached. To address this issue, Algorithm 13 follows a direct implementa-
tion of the definition of fi (see Definition 11), according to which any initiation/termination
point that is required to evaluate a future initiation of F =V ′ and has not been evaluated
in a previous step, based on the cache, is determined using initiatedAt/terminatedAt rules.
As a result, the correctness of Algorithm 13 follows from the correctness of rule evalua-
tion, which we have assumed to be correct. Therefore, RTEC→ evaluates correctly future
initiations with cycles.

Proposition (Correctness of RTEC→): RTEC→ computes all maximal intervals of the
FVPs of an event description, and no other interval. ▲

Proof. In the proof of Lemma 5, we demonstrated that, at the time of evaluating the future
initiations of F =V ′, the cache contains all initiations of F =V , and no other initiation

183 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

points, and all terminations of F =V , except from those stemming from future initiations
of F =V ′, and no other termination points. Moreover, we proved that RTEC→ computes
the future initiations of F =V ′, and no other points. According to line 8 of Algorithm 3, the
derived future initiations of F =V ′ are added in the list of cached terminations of F =V .
As a result, at the time of constructing the maximal intervals of F =V , the cache contains
the initiations and terminations of F =V , and no other points, leading to correct maximal
interval construction. Therefore, RTEC→ computes the maximal intervals of all FVPs of
an event description, and no other interval.

B.4 Proof of Proposition 7

We provide a proof for Proposition 7, describing the complexity of RTEC→. First, we
demonstrate the complexity of transferring attempt events between windows (see Lemma
6). Second, we outline the cost of evaluating the future initiations of all FVPs in an acyclic
cd-component (see Lemma 7). Third, we discuss the case of a cd-component with cycles
(see Lemma 8). Combining Lemmas 6–8 leads directly to a proof for Proposition 7.

Lemma 6 (Complexity of transferring attempt events): The cost of transferring attempt
events between windows is O(ω). ▲

Proof. Consider fi(F =V ,F =V ′,R). RTEC→ employs Algorithm 6 to determine which
attempt events of initiating F =V ′ will be cached. In the worst case, Algorithm 6 iterates
over the list of cached initiation points of F =V once. The size of this list is bounded by
the window size ω, and thus the worst case complexity of Algorithm 6 is O(ω). RTEC→

employs Algorithm 5 to determine which one the cached attempt events, if any, may mark
a future initiation of F =V ′. In the worst case, Algorithm 5 iterates over the list of cached
attempt events once, and the number of these events is bounded by the window size. As
a result, the cost of Algorithm 5 is O(ω). Therefore, the cost transferring attempt events
between windows is O(ω).

Lemma 7 (Complexity of processing an acyclic cd-component): The cost of evalu-
ating the future initiations of all FVPs in an acyclic cd-component is O(nv(ω−R)log(ω)),
where nv is the number of possible values of an FVP, ω is the window size and R is the
delay of a future initiation. ▲

Proof. Consider fi(F =V ,F =V ′,R) and an acyclic cd-component that contains the vertex
of FVP F =V . We compute the cost of evaluating the future initiations of F =V ′. For each
initiation point T of F =V , where T ≤ qi−R, we may have a future initiation of F =V ′ that
falls inside the window. The number of these initiations is bounded by ω−R. Moreover,
there may be a future initiation of F =V ′ at the time of the cached attempt event, if any.
Therefore, RTEC→ may evaluate a future initiation of F =V ′ at most ω−R+1 times. To
evaluate each future initiation of F =V ′, RTEC→ performs a cache retrieval operation from
the sorted lists of initiation and termination points of F =V , in order to check whether
one of them cancels the future initiation of F =V ′. The size of each list is bounded by

P. Mantenoglou 184

Reasoning over Complex Temporal Specifications and Noisy Data Streams

ω, and thus the cost of determining whether a future initiation is cancelled is O(log(ω)).
Therefore, after simplifications, the cost of evaluating the future initiations of F =V ′ is
O((ω−R) log(ω)). In an acyclic cd-component, all vertices are connected with f-edges,
and thus correspond to FVPs with the same fluent. As a result, an acyclic cd-component
may have at most nv FVPs. Thus, the cost of evaluating the future initiations of all FVPs
in a cd-component is O(nv(ω−R)log(ω)).

Lemma 8 (Complexity of processing a cd-component with cycles): The cost of evalu-
ating the future initiations of all FVPs in a cd-component with cycles is O(nv(ω−R)log(ω)),
where nv is the number of possible values of an FVP, ω is the window size and R is the
delay of a future initiation. ▲

Proof. Consider fi(F =V ,F =V ′,R) and that the cd-component that includes the vertices
of F =V and F =V ′ contains cycles with f-edges. In this case, RTEC→ does not assume
that the cancellation points of future initiations of F =V ′ are available in the cache. To
address this issue, RTEC→ employs Algorithm 13, which may, at most, evaluate the future
initiation of each FVP in the cd-component once, at each of the ω−R+1 time-points of the
window where we may have such an initiation. This is because Algorithm 13 uses the
cache of RTEC→ in order to store previous evaluation of FVP initiations, and thus avoids
re-computations. As a result, the cost of evaluating the future initiations of all FVPs in a
cd-component including cycles with f-edges remains O((ω−R)nv log(ω)).

Proposition (Complexity of RTEC→): The cost of evaluating the future initiations of the
FVPs in a cd-component is O(nv(ω−R)log(ω)), where nv is the number of possible values
of the FVPs, ω is the window size and R is the delay of a future initiation. ▲

Proof. Based on Lemmas 6, 7 and 8, the worst-case cost of evaluating the future initiations
of all FVPs in a cd-component, including windowing, is O(nv(ω−R)log(ω)).

B.5 Proof of Lemma 1

Lemma: Algorithm 8 computes all interval pairs (i s , i t), where i s ∈ S and i t ∈ T , satisfying
an Allen relation, and no other interval pair. ▲

Proof. First, we demonstrate that Algorithm 8 is sound, i.e., if Algorithm 8 computes an
interval pair (i s , i t), such that i s ∈ S and i t ∈ T , then (i s , i t) satisfies the selected relation
rel, i.e., rel(i s , i t) holds. When rel is not before, Algorithm 8 may only compute (i s , i t) if
rel(i s , i t) holds (see line 9). When rel is before, (i s , i t) may only be computed in line 6 or
line 8. If (i s , i t) is computed in line 6, ps points to i s and pt points to i tb , where i tb is i t or
some interval before i t in list T . Moreover, according to line 5, before(i s , i tb) holds, and
thus f (i s) < s(i tb). If i tb is before i t , then we have that f (i s) < s(i t), because T is a sorted
list of maximal intervals. Therefore, (i s , i t) also satisfies before. If (i s , i t) is computed
in line 8, then the interval pair of the current iteration is (i s , i tb), i tb is before i t in T and

185 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

f (i s) ≤ f (i tb) (see line 7). As a result, we have that f (i s) < s(i t), and thus before(i s , i t)
holds. Therefore, Algorithm 8 is sound.

We demonstrate that Algorithm 8 is complete, i.e., if, for the selected relation rel, rel(i s , i t)
holds, where i s ∈ S and i t ∈ T , then Algorithm 8 computes (i s , i t). First, we demonstrate
completeness when rel is not before. Suppose that rel(i s , i t) holds and Algorithm 8 does
not compute (i s , i t). In this case, according to line 9, there is no iteration of the while loop
of Algorithm 8 such that pointer ps points to i s and pt points to i t . The condition of the while
loop states that Algorithm 8 iterates over all items in at least one of the input lists (see line
2). Suppose that, in the current iteration, ps points to i s when pt points to an interval i tb that
is before i t in list T . Given that rel(i s , i t) holds, we demonstrate the necessary relative
positions between the endpoints of i s and i tb for each relation rel other than before below:

• meets : meets(i s , i t)⇐⇒ f (i s)= s(i t)⇒ f (i s) > f (i tb)

• starts : starts(i s , i t)⇐⇒ s(i s)= s(i t) ∧ f (i s) < f (i t)⇒ s(i s) > f (i tb)

• finishes : finishes(i s , i t)⇐⇒ s(i s) > s(i t) ∧ f (i s)= f (i t)⇒ s(i s) > f (i tb)

• during : during(i s , i t)⇐⇒ s(i s) > s(i t) ∧ f (i s) < f (i t)⇒ s(i s) > f (i tb)

• overlaps : overlaps(i s , i t)⇐⇒ s(i s) < s(i t) ∧ f (i s) > s(i t) ∧ f (i s) < f (i t)

⇒ f (i s) > f (i tb)

• equal : equal(i s , i t)⇐⇒ s(i s)= s(i t) ∧ f (i s)= f (i t)⇒ s(i s) > f (i tb)

According to these results and the conditions in lines 10 and 12, Algorithm 8 increments
pointer pt , and not ps . Algorithm 8 continues to increment only pointer pt in the following
iterations until pt points to i t .

Suppose now that, in the current iteration, pt points to i t when ps points to an interval i sb
that is before i s in list S. Given that rel(i s , i t) holds, for each relation rel other than before,
the following conditions must hold for the endpoints of i sb and i t :

• meets : meets(i s , i t)⇐⇒ f (i s)= s(i t)⇒ f (i sb) < s(i t)

• starts : starts(i s , i t)⇐⇒ s(i s)= s(i t) ∧ f (i s) < f (i t)⇒ f (i sb) < s(i t)

• finishes : finishes(i s , i t)⇐⇒ s(i s) > s(i t) ∧ f (i s)= f (i t)⇒ f (i sb) < f (i t)

• during : during(i s , i t)⇐⇒ s(i s) > s(i t) ∧ f (i s) < f (i t)⇒ f (i sb) < f (i t)

• overlaps : overlaps(i s , i t)⇐⇒ s(i s) < s(i t) ∧ f (i s) > s(i t) ∧ f (i s) < f (i t)

⇒ f (i sb) < s(i t)

• equal : equal(i s , i t)⇐⇒ s(i s)= s(i t) ∧ f (i s)= f (i t)⇒ f (i sb) < s(i t)

P. Mantenoglou 186

Reasoning over Complex Temporal Specifications and Noisy Data Streams

By combining these results with the conditions in lines 10 and 12 of Algorithm 8, we deduce
that Algorithm 8 increments only pointer ps , and keeps incrementing only this pointer until
it points to i s .

We have proven that in, both cases, Algorithm 8 reaches an iteration such that ps points
to i s and pt points to i t , which is a contradiction. Therefore, Algorithm 8 computes (i s , i t),
and thus we have proven that Algorithm 8 is complete for all relations other than before.

Suppose that rel is before, before(i s , i t) holds and Algorithm 8 does not compute (i s , i t).
According to line 5 of Algorithm 8, there is no iteration where ps points to i s and pt points to
i t . Moreover, there is no iteration of Algorithm 8 where ps points to i s , pt point to i tb , where
is i tb is before i t in T and f (i s) ≤ f (i tb) holds (see line 7). Suppose that i tr is the earliest
interval in T such that f (i s) ≤ f (i tr). (Note that, since before(i s , i t)⇔ f (i s) < s(i t) < f (i t)
holds, i tr is guaranteed to exist.) Since Algorithm 8 processes all intervals in at least one
of the input lists (see line 2), we distinguish three possibilities:

• ps points to i s when pt points to i tb , where i tb is before i tr in T . Since i tr is the first
interval of T satisfying f (i s) ≤ f (i tr), it holds that f (i s) > f (i tb). In this case, according
to the conditions in lines 10 and 12, Algorithm 8 increments only pointer pt , and thus
pt eventually points to i tr , reaching an iteration where ps points to i s and pt points to
a target interval i tr , such that f (i s) ≤ f (i tr).

• ps points to i s when pt points to i tc , where i tc is i tr or some interval between i tr and i t

in T . By the definition of i tr , we have that f (i s) ≤ f (i tc).

• pt points to i t when ps points to i sb , where i sb is before i s in S. Since it holds that
before(i s , i t), we have f (i sb) < s(i t). Therefore, according to the conditions in lines
10 and 12, Algorithm 8 increments ps , and not pt . Algorithm 8 continues to increment
ps until it points to i s .

We have demonstrated that, in all cases, Algorithm 8 reaches an iteration such that ps
points to i s and pt points either to i t or to a target interval i tc , such that f (i s) ≤ f (i tc). This
is a contradiction. Therefore, Algorithm 8 computes (i s , i t), and thus is complete in the
case of before.

We have proven that Algorithm 8 is sound and complete. Therefore, Algorithm 8 computes
all interval pairs (i s , i t), where i s ∈ S and i t ∈ T , satisfying an Allen relation, and no other
interval pair.

B.6 Proof of Lemma 2

Lemma: Algorithm 9 caches all intervals that may satisfy an Allen relation other than before
with an interval arriving in the future, and no other interval. In the case of before, Algorithm
9 caches the source intervals ending at most mem time-points before the start of the next
window. ▲

187 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Proof. Suppose that s(wj+1) is the start of the next window. A target interval i t ending
before s(wj+1) cannot satisfy an Allen relation with a source interval i s ending after or
at s(wj+1), because all Allen relations require that f (i s) ≤ f (i t). Moreover, (a possibly
revised incarnation of) all intervals ending after s(wj+1)will be available in the next window.
Therefore, an interval may need to be cached iff it is a source interval containing s(wj+1),
a target interval containing s(wj+1) or a source interval ending before s(wj+1).

• Caching a source interval i s∗ that contains s(wj+1). We will prove that Algorithm
9 caches [s(i s∗), s(wj+1)] iff i s∗ may satisfy an Allen relation with a target interval i t
arriving in the future. meets/overlaps/before: if i t occurs in the next window wj+1 ,
it holds that s(i t) > s(i s∗), and thus i s∗ may satisfy meets, overlaps or before with i t .
Therefore, Algorithm 9 caches [s(i s∗), s(wj+1)] (line 6). starts/equal: starts(i s∗ , i t) and
equal(i s∗ , i t) may hold only if s(i s∗)= s(i t) and f (i s∗) ≤ f (i t), in which case i t also
contains s(wj+1). Thus, we cache [s(i s∗), s(wj+1)] iff there is a target interval start-
ing at s(i s∗) and containing s(wj+1) (see the conditions for starts and equal in line
6). finishes/during: finishes(i s∗ , i t) and during(i s∗ , i t) may hold only if s(i s∗) > s(i t) and
f (i s∗) ≤ f (i t). Therefore, we cache [s(i s∗), s(wj+1)] iff there is a target interval starting
before s(i s∗) and containing s(wj+1) (see the conditions for finishes and during in line
6).

• Caching a source interval i s that ends before s(wj+1). In the case of before, Al-
gorithm 9 caches i s iff it ends in [s(wj+1) − mem, s(wj+1)] (see lines 17–18). In
that case, Algorithm 9 may also cache the segment of a target interval i t∗ con-
taining s(wj+1), if any, that is before s(wj+1) in order to compute before(i s , i t∗) in
the next window (see lines 11–12). We will prove that Algorithm 9 caches i s iff i s
may satisfy an Allen relation other than before with a target interval i t arriving in
the future. meets/starts/overlaps/during: meets(i s , i t), starts(i s , i t), overlaps(i s , i t) and
during(i s , i t) may hold only for a target interval i t arriving in the future if it contains
s(wj+1), because these relations require that s(i t) ≤ f (i s). Since the segment of
i t before s(wj+1) will not change in the future, i s may satisfy one of these relations
with i t in a subsequent window only if the relation is satified given the current prefix
of i t . Therefore, we cache i s iff (i s , i t) satisfies the selected relation meets, starts,
overlaps or during. Note that in these cases Algorithm 9 also caches the segment
of i t that is before s(wj+1) in order to compute (i s , i t) correctly in the next window
(see lines 9–10 and the condition for during in line 13). finishes/equal: finishes(i s , i t)
and equal(i s , i t) require that f (i s)= f (i t). Therefore, i s may not satisfy these rela-
tions with a target interval ending after s(wj+1), and thus we do not cache i s when
evaluating finishes or equal.

• Caching a target interval i t∗ that contains s(wj+1). In the previous paragraph, we
described that the segment [s(i t∗), s(wj+1)] of i t∗ may be cached in order to facili-
tate the computation of an interval pair (i s , i t∗), where i s is a cached source inter-
val arriving before s(wj+1), in the next window. Apart from these cases, we will
prove that Algorithm 9 caches [s(i t∗), s(wj+1)] iff i t∗ may satisfy an Allen relation with

P. Mantenoglou 188

Reasoning over Complex Temporal Specifications and Noisy Data Streams

a source interval i s arriving in the future. finishes/during: if i s occurs in the next win-
dow wj+1 , it holds that s(i s) > s(i t∗), and thus i s∗ may satisfy finishes or during with
i t . Therefore, Algorithm 9 caches [s(i t∗), s(wj+1)] (line 13). starts/equal: starts(i s , i t∗)
and equal(i s , i t∗) may hold only if s(i s)= s(i s∗) and f (i s) ≤ f (i t∗), in which case i s

also contains s(wj+1). Thus, Algorithm 9 caches [s(i t∗), s(wj+1)] iff there is a source
interval starting at s(i t∗) and containing s(wj+1) (see the conditions for starts and
equal in line 13). overlaps: may hold only if s(i s) < s(i t∗). Therefore, Algorithm 9
caches [s(i t∗), s(wj+1)] iff there is a source interval starting before s(i t∗) and contain-
ing s(wj+1) (see the conditions for overlaps in line 13). meets/before: meets(i s , i t∗) and
before(i s , i t∗) require that f (i s) ≤ s(i t∗). Therefore, i t∗ cannot satisfy these relations
with a future source interval, and thus Algorithm 9 does not cache [s(i t∗), s(wj+1)].

We demonstrated that, for all relations other than before, Algorithm 9 caches all intervals
that may satisfy an Allen relation with an interval arriving in the future, and no other inter-
vals. In the case of before, we showed that Algorithm 9 caches the source intervals ending
at most mem time-points before the start of the next window.

B.7 Proof of Proposition 10

Proposition (Complexity of RTECA): The cost of computing the maximal intervals of a
statically determined fluent defined in terms of an Allen relation is O(n), where n is the
number of input intervals. ▲

Proof. The maximal intervals of statically determined fluents defined in terms of an Allen
relation are derived by the allen construct, which is implemented in Algorithm 7. We will
show that the cost of all execution steps of Algorithm 7 isO(n). To do this, we demonstrate
the complexity of Algorithms 8 and 9, which are invoked by Algorithm 7.

• In our logic programming implementation of Algorithm 8, the suffix of the target list T
starting from pt is available in each iteration of the loop. Therefore, the tuples in lines
6 and 8 are derived without iterating over the corresponding elements of T , and thus
the cost of their addition in the pairs list is O(1). In each iteration of Algorithm 8, we
increment at least one of the pointers ps and pt , because the conditions in lines 10
and 12 are exhaustive, and the while loop terminates at the latest when both input
lists have been traversed (see line 2). Therefore, Algorithm 8 performs at most one
iteration for each input interval, and thus its cost is O(n).

• Algorithm 9 identifies the source intervals ending before the start of the next window
s(wj+1), and the source and the target interval, if any, containing s(wj+1) with cost
O(n). In lines 9, 11, 16 and 18, Algorithm 9 identifies the source interval(s) satisfying
relwith costO(n). The remaining operations of Algorithm 9 are variable comparisons
and caching operations that are performed in constant time. Therefore, the cost of
Algorithm 9 is O(n).

189 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

The remaining execution steps of Algorithm 7 comprise input list traversals and, possi-
bly, the evaluation of an interval manipulation construct, i.e., union_all, intersect_all or rela-
tive_complement_all. The cost of these operations is O(n) [Artikis et al., 2015]. Therefore,
the cost of computing the maximal intervals of a statically determined fluent defined in
terms of an Allen relation is O(n).

P. Mantenoglou 190

Reasoning over Complex Temporal Specifications and Noisy Data Streams

APPENDIX C. PROOFS FOR PROPOSITIONS OF CHAPTER 6

C.1 Proof of Proposition 11

Proposition: If [ts , te] is a PMI, then ts satisfies the following condition:

∀tprev ∈ [1 , ts), prev_prefix [tprev] > prev_prefix [ts] (C.1)

♦

Proof. Suppose that ts does not satisfy condition (C.1). Then,

∃t ′s : t ′s < ts and prev_prefix [t ′s] ≤ prev_prefix [ts] (C.2)

We have that:

dprange[t ′s , te] = dp[te]−prefix [t ′s−1]
= dp[te]−prev_prefix [t ′s]
from ineq. (C.2)

≥ dp[te]−prev_prefix [ts]
= dprange[ts , te] ≥ 0

Note that dprange[ts , te] ≥ 0 because [ts , te] is a PMI.

The fact that dprange[t ′s , te] ≥ 0 , as shown above, indicates that ∃t ′e : t ′e ≥ te and [t ′s , t
′
e] is

a PMI — see corollary (5.16). Additionally, [ts , te] is a sub-interval of [t ′s , t ′e] since t ′s < ts .
Therefore, by Definition 21, [ts , te] is not a PMI. By contradiction, ts must satisfy condition
(C.1).

C.2 Proof of Lemma 3

Lemma: If I = [s , e] is a PMI, then dprange[s , e] is non-negative. Moreover, for every in-
terval I ′ = [k , l], such that I is a sub-inteval of I ′, we have dprange[k , l] < 0 . ▲

Proof. Since I is a PMI, then P(I) ≥ T , i.e., the probability of I is greater or equal to the
threshold T . By taking advantage of the definitions of the lists of oPIEC (see Section 5.3),
we have the following:

P(I) ≥ T Eq .(5 .11)⇐=====⇒
∑

s≤m≤e

L[m] ≥ 0
Eq .(5 .12)⇐=====⇒ prefix [e]− prefix [s − 1] ≥ 0 .

We proceed as follows. According to Eq. (5.13), we have that dp[e] = maxe≤m≤n prefix [m],
where n is the last time-point seen by oPIEC, and therefore dp[e] ≥ prefix [e]. Conse-
quently, it holds that:

prefix [e]− prefix [s − 1] ≥ 0 =⇒ max
e≤m≤n

prefix [m]− prefix [s − 1] ≥ 0
Eq .(5 .13)⇐=====⇒

191 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

dp[e]− prefix [s − 1] ≥ 0
Eq .(5 .14)⇐=====⇒ dprange[s , e] ≥ 0

Therefore, we conclude that if I =[s , e] is a PMI, then dprange[s , e] ≥ 0 .

We will now prove the second part of this lemma. Let k ≤ s , l ≥ e, I ′ =[k , l], I ′ ̸= I , i.e., I
is a sub-interval of I ′, and dprange[k , l] ≥ 0 . Then, we have:

dprange[k , l] ≥ 0
Eq .(5 .14)⇐=====⇒ dp[l] ≥ prefix [k − 1]

Eq .(5 .13)⇐=====⇒

max
l≤m≤n

prefix [m] ≥ prefix [k − 1]⇐⇒ ∃m : l ≤ m ≤ n, prefix [m] ≥ prefix [k − 1]
Eq .(5 .12)⇐=====⇒

∃m : l ≤ m ≤ n,
∑

k≤m ′≤m

L[m ′] ≥ 0
Eq .(5 .11)⇐=====⇒ ∃m : l ≤ m ≤ n,P([k ,m]) ≥ T

The probability of I ′′ = [k ,m], where m ≥ l , is greater or equal to the threshold
and I ⊂ I ′ ⊆ I ′′. Therefore, I is not a PMI. We reached a contradiction and thus
dprange[k , l] < 0 .

C.3 Proof of Lemma 4

Lemma: Suppose that In[i ..j] is the current data batch, [sst1 ..sstm] is the list of time-
points in the support set, and the interval I = [sstk , l], where 1 ≤ k ≤ m and i ≤ l ≤ j ,
is a PMI. The execution of Algorithm 11 will eventually reach the state {k , l , true} or the
state {k , l , false}.

Proof. Thewhile loop of Algorithm 11 stops searching for PMIs starting with a time-point in
the support set when either ptss has iterated over all elements in the support set, including
sstk , the starting point of I , or e has iterated over all elements of the current data batch,
including l , the ending point of I . As a result, Algorithm 11 reaches a state for which either
ptss = k or e = l . There are two possibilities for the first encounter of such a state:

1. {k ′, l , true/false}, where k ′ < k . Since I =[sstk , l] is a PMI and a sub-interval of
[sstk ′ , l], we have dprange[sstk ′ , l] < 0 (see Lemma 3). Consequently, the condition
of the if statement in line 5 of Algorithm 11 fails when its state is {k ′, l , true/false},
and ptss is subsequently incremented. The same holds for all the following states
{k ′′, l , true/false}, where k ′ < k ′′ < k , because I is a sub-interval of [sstk ′′ , l]. There-
fore, ptss will continue to increase until the algorithm reaches the state {k , l , false};
the flag is set to false because ptss is increased in the last iteration before state
{k , l , false} (see line 8 of Algorithm 11).

2. {k , l ′, true/false}, where l ′ < l . Since I =[sstk , l] is a PMI, we have
dprange[sstk , l] ≥ 0 (Lemma 3). Equivalently, we have dp[l] ≥ prefix [sstk − 1]
(Eq. (5.14)). As a corollary of the definition of dp (Eq. (5.13)), for t1 < t2 , we have:

max
t1≤t≤n

(prefix [t]) ≥ max
t2≤t≤n

(prefix [t])
Eq .(5 .13)
======⇒ dp[t1] ≥ dp[t2].

P. Mantenoglou 192

Reasoning over Complex Temporal Specifications and Noisy Data Streams

In other words, dp is a decreasing sequence and thus dp[l ′′] ≥ prefix [sstk − 1],
when l ′′ < l . So, for every state {k , l ′′, true/false}, where l ′ ≤ l ′′ < l , we have that
dprange[sstk , l

′′] ≥ 0 . The if condition in line 5 of Algorithm 11 holds for all these
states and e increases continuously until Algorithm 11 reaches the state {k , l , true}.
The flag is set to true, because e is increased in the last iteration before state
{k , l , true} (see line 5 of Algorithm 11).

Hence, given that I = [sstk , l] is a PMI, the execution of Algorithm 11 reaches either the
state {k , l , true} or the state {k , l , false}.

C.4 Proof of Proposition 13

Proposition (Soundness of Interval Computation): Every interval computed by oPIEC
is a PMI of the data seen so far. □

Proof. Suppose that In[i ..j] is the current data batch and [sst1 ..sstm] is the list of time-
points in the support set. Moreover, I =[sstk , l], where 1 ≤ k ≤ m, i ≤ l ≤ j , is an interval
computed by Algorithm 11. We will prove that I is a PMI.

In order for Algorithm 11 to reach line 7 and add the interval I = [sstk , l] to its results, the
state must be {k , l + 1 , true}. Recall that the value of flag is true iff the if condition in
line 5 was satisfied in the previous iteration, i.e., dprange[sstk , l] ≥ 0 . However, since the
execution reaches line 7, the if condition in line 5 fails in the current iteration, which means
that dprange[sstk , l + 1] < 0 . Hence, we have the following:

dprange[sstk , l] ≥ 0
Eq .(5 .14)⇐=====⇒ dp[l] ≥ prefix [sstk − 1]

Eq .(5 .13)⇐=====⇒

max
l≤l ′≤j

(prefix [l ′]) ≥ prefix [sstk − 1]
(a)
==⇒ prefix [l] ≥ prefix [sstk − 1]

Eq .(5 .12)⇐=====⇒∑
sstk≤t≤l

L[t] ≥ 0
Eq .(5 .11)⇐=====⇒ P(I = [sstk , l]) ≥ T

Implication (a) holds because if there existed a l ′ > l for which prefix [l ′] ≥ prefix [l], then we
would have dprange[sstk , l + 1] ≥ 0 , contradicting the fact that line 7 has been reached.
Thus, we conclude that the probability of interval I is greater or equal to the threshold.
Next, we will show that I is not a sub-interval of a PMI.

Suppose that I is a sub-interval of the PMI I ′ =[sstk ′ , l ′], i.e., k ′ ≤ k , l ′ ≥ l , I ̸= I ′

and P(I ′) ≥ T . Based on Lemma 4, Algorithm 11 will reach the state {k ′, l ′, true/false}.
Also, since I ′ is a PMI, we have dprange[sstk ′ , l ′] ≥ 0 (Lemma 3). So, the if condition in
line 7 of Algorithm 11 is satisfied, e is incremented and the flag is set to true, thus reaching
the state {k ′, l ′ + 1 , true}.

Since I =[sstk , l] is computed by oPIEC, the state {k , l + 1 , true} is also reached. More-
over, since k ′ ≤ k , the following transition between states has to take place, possibly in

193 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

multiple steps:

{k ′, l ′ + 1 , true} → . . .→ {k , l + 1 , true}

We distinguish between two cases depending on the value of l ′. If l ′ > l , the above state
transition is infeasible since e does not decrease in Algorithm 11. If l ′ = l , the state tran-
sition can only be achieved by increasing ptss up to the value k while e remains constant.
However, incrementing ptss is accompanied by setting the flag to false (see line 8 of Algo-
rithm 11). The flag can only be reset when incrementing e (in line 5). Therefore, eventually
either e = l + 1 and flag = false, or e > l + 1 and flag = true. In either case, the afore-
mentioned transition cannot take place.

Consequently, oPIEC cannot reach the state {k , l + 1 , true} and, as a result, cannot com-
pute I . By contradiction, there is no PMI I ′ such that I is a sub-interval of I ′.

Therefore, since P(I) ≥ T and I is not the sub-interval of a PMI, I is a PMI. Thus, every
interval computed by oPIEC is a PMI.

P. Mantenoglou 194

Reasoning over Complex Temporal Specifications and Noisy Data Streams

REFERENCES

Aghasadeghi, A., den Bussche, J. V., & Stoyanovich, J. (2024). Temporal graph patterns
by timed automata. VLDB J., 33(1), 25–47.

Agrawal, J., Diao, Y., Gyllstrom, D., & Immerman, N. (2008). Efficient pattern matching
over event streams. SIGMOD Conference, 147–160.

Albanese, M., Chellappa, R., Cuntoor, N., Moscato, V., Picariello, A., Subrahmanian, V. S.,
& Udrea, O. (2010). PADS: A Probabilistic Activity Detection Framework for Video
Data. IEEE Trans. Pattern Anal. Mach. Intell., 32(12), 2246–2261.

Alevizos, E., Artikis, A., & Paliouras, G. (2022). Complex event forecasting with prediction
suffix trees. VLDB J., 31.

Alevizos, E., Skarlatidis, A., Artikis, A., & Paliouras, G. (2017). Probabilistic complex event
recognition: A survey. Commun. ACM, 50(5), 71:1–71:31.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Commun. ACM,
26(11), 832–843.

Allen, J. F. (1984). Towards a general theory of action and time. Artif. Intell., 23(2), 123–
154.

Allison, L. (2003). Longest biased interval and longest non-negative sum interval. Bioin-
form., 19(10), 1294–1295.

Alrayes, B., Kafali, Ö., & Stathis, K. (2018). Concurrent bilateral negotiation for open e-
markets: The conan strategy. Knowl. Inf. Syst., 56(2), 463–501.

Andrienko, N., Andrienko, G., Artikis, A., Mantenoglou, P., & Rinzivillo, S. (2024). Human-
in-the-loop: Visual analytics for building models recognising behavioural patterns
in time series. IEEE Computer Graphics and Applications, 1–15. https://doi.org/10.
1109/MCG.2024.3379851

Anicic, D., Rudolph, S., Fodor, P., & Stojanovic, N. (2012). Stream reasoning and complex
event processing in ETALIS. Semantic Web, 3(4), 397–407.

Apriceno, G., Passerini, A., & Serafini, L. (2021). A neuro-symbolic approach to structured
event recognition. TIME, 206, 11:1–11:14.

Apriceno, G., Passerini, A., & Serafini, L. (2022). A neuro-symbolic approach for real-world
event recognition from weak supervision. TIME, 247, 12:1–12:19.

Apt, K. R., & Bol, R. N. (1994). Logic programming and negation: A survey. J. Log. Pro-
gram., 19/20, 9–71.

Arasu, A., Babu, S., & Widom, J. (2006). The CQL continuous query language: Semantic
foundations and query execution. VLDB J., 15(2), 121–142.

195 P. Mantenoglou

https://doi.org/10.1109/MCG.2024.3379851
https://doi.org/10.1109/MCG.2024.3379851

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Arias, J., Carro, M., Chen, Z., & Gupta, G. (2020). Justifications for goal-directed constraint
answer set programming. ICLP Technical Communications, 325, 59–72.

Arias, J., Carro, M., Chen, Z., & Gupta, G. (2022). Modeling and reasoning in event cal-
culus using goal-directed constraint answer set programming. Theory Pract. Log.
Program., 22(1), 51–80.

Arias, J., Carro, M., Salazar, E., Marple, K., & Gupta, G. (2018). Constraint answer set
programming without grounding. Theory Pract. Log. Program., 18(3-4), 337–354.

Arrieta, A. B., Rodrı́guez, N. D., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., Garcı́a,
S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Ex-
plainable artificial intelligence (XAI): concepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Inf. Fusion, 58, 82–115.

Artikis, A., Makris, E., & Paliouras, G. (2021). A probabilistic interval-based event calculus
for activity recognition. Ann. Math. Artif. Intell., 89(1-2), 29–52.

Artikis, A., & Pitt, J. V. (2008). Specifying open agent systems: A survey. ESAWWorkshop,
5485, 29–45.

Artikis, A., & Sergot, M. J. (2010). Executable specification of open multi-agent systems.
Logic Journal of the IGPL, 18(1), 31–65.

Artikis, A., Sergot, M. J., & Paliouras, G. (2010). A logic programming approach to activity
recognition. EIMM Workshop in MM, 3–8.

Artikis, A., Sergot, M. J., & Paliouras, G. (2012a). Run-time composite event recognition.
DEBS, 69–80.

Artikis, A., Sergot, M. J., & Paliouras, G. (2015). An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng., 27(4), 895–908.

Artikis, A., Skarlatidis, A., Portet, F., & Paliouras, G. (2012b). Logic-based event recogni-
tion. Knowl. Eng. Rev., 27(4), 469–506.

Artikis, A., & Zissis, D. (Eds.). (2021). Guide to maritime informatics. Springer.

Awad, A., Tommasini, R., Langhi, S., Kamel, M., Valle, E. D., & Sakr, S. (2022). D2ia:
User-defined interval analytics on distributed streams. Inf. Syst., 104, 101679.

Bai, Y., Thakkar, H., Wang, H., Luo, C., & Zaniolo, C. (2006). A data stream language and
system designed for power and extensibility. CIKM, 337–346.

Baral, C., Gelfond, M., & Rushton, J. N. (2009). Probabilistic reasoning with answer sets.
Theory Pract. Log. Program., 9(1), 57–144.

Barbieri, D. F., Braga, D., Ceri, S., Valle, E. D., & Grossniklaus, M. (2010). C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semantic Comput., 4(1),
3–25.

Baumgartner, P. (2021a). Combining event calculus and description logic reasoning via
logic programming. FroCoS, 98–117.

P. Mantenoglou 196

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Baumgartner, P. (2021b). The fusemate logic programming system. CADE, 12699, 589–
601.

Bazoobandi, H. R., Beck, H., & Urbani, J. (2017). Expressive stream reasoning with laser.
ISWC, 10587, 87–103.

Beck, H., Dao-Tran, M., & Eiter, T. (2018). LARS: A logic-based framework for analytic
reasoning over streams. Artif. Intell., 261, 16–70.

Beck, H., Eiter, T., & Folie, C. (2017). Ticker: A system for incremental asp-based stream
reasoning. Theory Pract. Log. Program., 17(5-6), 744–763.

Bellodi, E., Alberti, M., Riguzzi, F., & Zese, R. (2020). Map inference for probabilistic logic
programming. Theory Pract. Log. Program., 20(5), 641–655.

Bereta, K., Chatzikokolakis, K., & Zissis, D. (2021). Maritime reporting systems. In Guide
to maritime informatics (pp. 3–30). Springer.

Berreby, F., Bourgne, G., & Ganascia, J. (2018). Event-based and scenario-based causal-
ity for computational ethics. AAMAS, 147–155.

Bragaglia, S., Chesani, F., Mello, P., Montali, M., & Torroni, P. (2012). Reactive event
calculus for monitoring global computing applications. Logic Programs, Norms and
Action - Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday,
7360, 123–146.

Brendel, W., Fern, A., & Todorovic, S. (2011). Probabilistic event logic for interval-based
event recognition. CVPR, 3329–3336.

Bromuri, S., Urovi, V., & Stathis, K. (2010). Icampus: A connected campus in the ambient
event calculus. Int. J. Ambient Comput. Intell., 2(1), 59–65.

Bucchi, M., Grez, A., Quintana, A., Riveros, C., & Vansummeren, S. (2022). CORE: a
complex event recognition engine. Proc. VLDB Endow., 15(9), 1951–1964.

Cabalar, P., Fandinno, J., & Fink, M. (2014). Causal graph justifications of logic programs.
Theory Pract. Log. Program., 14(4-5), 603–618.

Cabalar, P., Fandinno, J., & Muñiz, B. (2020). A system for explainable answer set pro-
gramming. ICLP Technical Communications, 325, 124–136.

Cervesato, I., Franceschet, M., & Montanari, A. (2000). A guided tour through some ex-
tensions of the event calculus. Comput. Intell., 16(2), 307–347.

Cervesato, I., & Montanari, A. (2000). A calculus of macro-events: Progress report. TIME,
47–58.

Chaudet, H. (2006). Extending the event calculus for tracking epidemic spread. Artif. Intell.
Medicine, 38(2), 137–156.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model count-
ing. Artif. Intell., 172(6-7), 772–799.

197 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Chawda, B., Gupta, H., Negi, S., Faruquie, T. A., Subramaniam, L. V., & Mohania, M. K.
(2014). Processing interval joins on map-reduce. EDBT, 463–474.

Chekol, M. W., Pirrò, G., & Stuckenschmidt, H. (2019). Fast interval joins for temporal
SPARQL queries. WWW, 1148–1154.

Chesani, F., Mello, P., Montali, M., & Torroni, P. (2009). Commitment tracking via the re-
active event calculus. IJCAI, 91–96.

Chesani, F., Mello, P., Montali, M., & Torroni, P. (2010). A logic-based, reactive calculus of
events. Fundam. Informaticae, 105(1-2), 135–161.

Chesani, F., Mello, P., Montali, M., & Torroni, P. (2013). Representing andmonitoring social
commitments using the event calculus. Auton. Agents Multi Agent Syst., 27(1), 85–
130.

Chittaro, L., & Montanari, A. (1996). Efficient temporal reasoning in the cached event cal-
culus. Comput. Intell., 12(3), 359–382.

Chopra, A. K., Christie, S. H., & Singh, M. P. (2020). An evaluation of communication
protocol languages for engineering multiagent systems. J. Artif. Intell. Res., 69,
1351–1393.

Clark, K. L. (1977). Negation as failure. Logic and Data Bases, 293–322.

Cugola, G., &Margara, A. (2010). TESLA: A formally defined event specification language.
DEBS, 50–61.

Cugola, G., Margara, A., Matteucci, M., & Tamburrelli, G. (2015). Introducing uncertainty
in complex event processing: Model, implementation, and validation. Computing,
97(2), 103–144.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. J. Artif. Intell. Res., 17,
229–264.

Das, A., Gandhi, S. M., & Zaniolo, C. (2018). ASTRO: A datalog system for advanced
stream reasoning. CIKM, 1863–1866.

D’Asaro, F. A. (2019). Probabilistic epistemic reasoning about actions (Doctoral disserta-
tion). University College London, UK.

D’Asaro, F. A., Bikakis, A., Dickens, L., & Miller, R. (2017). Foundations for a probabilistic
event calculus. LPNMR, 57–63.

D’Asaro, F. A., Raggioli, L., Malek, S., Grazioso, M., & Rossi, S. (2023). An application
of a runtime epistemic probabilistic event calculus to decision-making in e-health
systems. Theory Pract. Log. Program., 23(5), 1070–1093.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its
application in link discovery. IJCAI, 2462–2467.

de Leng, D., & Heintz, F. (2019). Approximate stream reasoning with metric temporal logic
under uncertainty. AAAI, 2760–2767.

P. Mantenoglou 198

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Dell’Aglio, D., Valle, E. D., van Harmelen, F., & Bernstein, A. (2017). Stream reasoning: A
survey and outlook. Data Sci., 1(1-2), 59–83.

Demers, A. J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., & White, W. M. (2007).
Cayuga: A general purpose event monitoring system. CIDR, 412–422.

Demolombe, R. (2014). Obligations with deadlines: A formalization in dynamic deontic
logic. J. Log. Comput., 24(1), 1–17.

Dousson, C., & Maigat, P. L. (2007). Chronicle recognition improvement using temporal
focusing and hierarchisation. IJCAI, 324–329.

Eiter, T., Ogris, P., & Schekotihin, K. (2019). A distributed approach to LARS stream rea-
soning (system paper). Theory Pract. Log. Program., 19(5-6), 974–989.

Falcionelli, N., Sernani, P., de la Torre, A. B., Mekuria, D. N., Calvaresi, D., Schumacher,
M., Dragoni, A. F., & Bromuri, S. (2019). Indexing the event calculus: Towards prac-
tical human-readable personal health systems. Artif. Intell. Medicine, 96, 154–166.

Fierens, D., Van Den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,
Janssens, G., & De Raedt, L. (2014). Inference and learning in probabilistic logic
programs using weighted boolean formulas. Theory Pract. Log. Program., 15(3),
358–401.

Fikioris, G., Patroumpas, K., Artikis, A., Pitsikalis, M., & Paliouras, G. (2023). Optimizing
vessel trajectory compression for maritime situational awareness. GeoInformatica,
27(3), 565–591.

Fragkoulis, M., Carbone, P., Kalavri, V., & Katsifodimos, A. (2024). A survey on the evo-
lution of stream processing systems. VLDB J., 33(2), 507–541.

Galton, A., & Augusto, J. C. (2002). Two approaches to event definition. DEXA, 2453,
547–556.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2019). Multi-shot ASP solving with
clingo. Theory Pract. Log. Program., 19(1), 27–82.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming.
ICLP/SLP, 1070–1080.

Georgala, K., Sherif, M. A., & Ngomo, A. N. (2016). An efficient approach for the generation
of allen relations. ECAI, 285, 948–956.

Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., & Garofalakis, M. N. (2020). Com-
plex event recognition in the big data era: A survey. VLDB J., 29(1), 313–352.

Grez, A., Riveros, C., & Ugarte, M. (2019). A formal framework for complex event pro-
cessing. ICDT, 127, 5:1–5:18.

Grez, A., Riveros, C., Ugarte, M., & Vansummeren, S. (2020). On the expressiveness of
languages for complex event recognition. ICDT, 155, 15:1–15:17.

199 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Havelund, K., Omer, M., & Peled, D. (2021). Monitoring first-order interval logic. SEFM,
13085, 66–83.

Hindriks, K., & Riemsdijk, M. (2013). A real-time semantics for norms with deadlines. AA-
MAS, 507–514.

Hopkins, J., Kafali, Ö., Alrayes, B., & Stathis, K. (2019). Pirasa: Strategic protocol selection
for e-commerce agents. Electron. Mark., 29(2), 239–252.

Jones, A. J. I., & Sergot, M. J. (1996). A formal characterisation of institutionalised power.
Log. J. IGPL, 4(3), 427–443.

Kafali, Ö., Romero, A. E., & Stathis, K. (2017). Agent-oriented activity recognition in the
event calculus: An application for diabetic patients. Comput. Intell., 33(4), 899–925.

Karlsson, L., Gustafsson, J., & Doherty, P. (1998). Delayed effects of actions. ECAI, 542–
546.

Katzouris, N., & Artikis, A. (2020). WOLED: A tool for online learning weighted answer set
rules for temporal reasoning under uncertainty. KR, 790–799.

Katzouris, N., Paliouras, G., & Artikis, A. (2023). Online learning probabilistic event calcu-
lus theories in answer set programming. Theory Pract. Log. Program., 23(2), 362–
386.

Kauffman, S., Havelund, K., Joshi, R., & Fischmeister, S. (2018). Inferring event stream
abstractions. Formal Methods Syst. Des., 53(1), 54–82.

Khan, A., Serafini, L., Bozzato, L., & Lazzerini, B. (2019). Event detection from video using
answer set programing. CILC, 2396, 48–58.

Kimmig, A., Demoen, B., Raedt, L. D., Costa, V. S., & Rocha, R. (2011). On the imple-
mentation of the probabilistic logic programming language ProbLog. Theory Pract.
Log. Program., 11(2-3), 235–262.

Körber, M., Glombiewski, N., Morgen, A., & Seeger, B. (2021). Tpstream: Low-latency and
high-throughput temporal pattern matching on event streams. Distributed Parallel
Databases, 39(2), 361–412.

Kowalski, R. A., & Sergot, M. J. (1985). Computer representation of the law. IJCAI, 1269–
1270.

Kowalski, R. A., & Sergot, M. J. (1986). A logic-based calculus of events. New Gener.
Comput., 4(1), 67–95.

Laptev, N., Mozafari, B., Mousavi, H., Thakkar, H., Wang, H., Zeng, K., & Zaniolo, C.
(2016). Extending relational query languages for data streams. InData streamman-
agement (pp. 361–386). Springer.

Law, M. (2018). Inductive learning of answer set programs (Doctoral dissertation). Imperial
College London, UK.

P. Mantenoglou 200

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Law, M. (2023). Conflict-driven inductive logic programming. Theory Pract. Log. Program.,
23(2), 387–414.

Law, Y., Wang, H., & Zaniolo, C. (2004). Query languages and data models for database
sequences and data streams. VLDB, 492–503.

Lee, J., & Palla, R. (2012). Reformulating the situation calculus and the event calculus in
the general theory of stable models and in answer set programming. J. Artif. Intell.
Res., 43, 571–620.

Li, M., Mani, M., Rundensteiner, E. A., & Lin, T. (2011). Complex event pattern detection
over streams with interval-based temporal semantics. DEBS, 291–302.

List, T., Bins, J., Vazquez, J., & Fisher, R. B. (2005). Performance evaluating the evaluator.
VS-PETS, 129–136.

Lloyd, J. W. (1987). Foundations of logic programming, 2nd edition. Springer.

Loreti, D., Chesani, F., Mello, P., Roffia, L., Antoniazzi, F., Cinotti, T. S., Paolini, G., Masotti,
D., & Costanzo, A. (2019). Complex reactive event processing for assisted living:
The habitat project case study. Expert Systems with Applications, 126, 200–217.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021). Neural
probabilistic logic programming in deepproblog. Artif. Intell., 298, 103504.

Marı́n, R. H., & Sartor, G. (1999). Time and norms: A formalisation in the event-calculus.
ICAIL, 90–99.

Marra, G., Dumancic, S., Manhaeve, R., & Raedt, L. D. (2024). From statistical relational
to neurosymbolic artificial intelligence: A survey. Artif. Intell., 328, 104062.

Mavrommatis, A., Artikis, A., Skarlatidis, A., & Paliouras, G. (2016). A distributed event
calculus for event recognition. AI-IoT Workshop in ECAI, 1724, 31–37.

McAreavey, K., Bauters, K., Liu, W., & Hong, J. (2017). The event calculus in probabilistic
logic programming with annotated disjunctions. AAMAS, 105–113.

Michelioudakis, E., Artikis, A., & Paliouras, G. (2019). Semi-supervised online structure
learning for composite event recognition. Mach. Learn., 108(7), 1085–1110.

Michelioudakis, E., Artikis, A., & Paliouras, G. (2024). Online semi-supervised learning of
composite event rules by combining structure and mass-based predicate similarity.
Mach. Learn., 113(3), 1445–1481.

Michelioudakis, E., Skarlatidis, A., Paliouras, G., & Artikis, A. (2016). OSLα: Online struc-
ture learning using background knowledge axiomatization. ECML-PKDD, 232–247.

Miller, R., & Shanahan, M. (2002). Some alternative formulations of the event calculus. In
Computational logic: Logic programming and beyond, essays in honour of Robert
A. Kowalski, part II (pp. 452–490). Springer.

201 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Montali, M., Maggi, F. M., Chesani, F., Mello, P., & van der Aalst, W. M. P. (2013). Monitor-
ing business constraints with the event calculus. ACM Trans. Intell. Syst. Technol.,
5(1), 17:1–17:30.

Morariu, V. I., & Davis, L. S. (2011). Multi-agent event recognition in structured scenarios.
CVPR, 3289–3296.

Moura, J., & Damásio, C. V. (2015). Allowing cyclic dependencies in modular logic pro-
gramming. EPIA, 9273, 363–375.

Mueller, E. T. (2008). Event Calculus. In Handbook of knowledge representation (pp. 671–
708). Elsevier.

Mueller, E. T. (2015). Commonsense reasoning: An event calculus based approach. Mor-
gan Kaufmann.

Ngomo, A. N., Sherif, M. A., Georgala, K., Hassan, M. M., Dreßler, K., Lyko, K., Obraczka,
D., & Soru, T. (2021). LIMES: A framework for link discovery on the semantic web.
Künstliche Intell., 35(3), 413–423.

Nomikos, C., Rondogiannis, P., & Gergatsoulis, M. (2005). Temporal stratification tests
for linear and branching-time deductive databases. Theor. Comput. Sci., 342(2-3),
382–415.

Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal
interval-based KR event/action logics and transactional update logics (tech. rep.
No. 11). TU München.

Paschke, A., & Bichler, M. (2008). Knowledge representation concepts for automated SLA
management. Decis. Support Syst., 46(1), 187–205.

Paschke, A., & Kozlenkov, A. (2009). Rule-based event processing and reaction rules.
RuleML, 5858, 53–66.

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., & Theodoridis, Y. (2017).
Online event recognition from moving vessel trajectories. GeoInformatica, 21(2),
389–427.

Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., & Pelekis, N. (2015).
Event recognition for maritime surveillance. EDBT, 629–640.

Phuoc, D. L., Dao-Tran, M., Parreira, J. X., & Hauswirth, M. (2011). A native and adaptive
approach for unified processing of linked streams and linked data. ISWC, 7031,
370–388.

Piatov, D., Helmer, S., Dignös, A., & Persia, F. (2021). Cache-efficient sweeping-based
interval joins for extended allen relation predicates. VLDB J., 30(3), 379–402.

Pilourdault, J., Leroy, V., & Amer-Yahia, S. (2016). Distributed evaluation of top-k temporal
joins. SIGMOD Conference, 1027–1039.

Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., & Jousselme, A. (2019). Com-
posite event recognition for maritime monitoring. DEBS, 163–174.

P. Mantenoglou 202

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Pitt, J., Kamara, L., Sergot, M., & Artikis, A. (2006). Voting in multi-agent systems.Comput.
J., 49(2), 156–170.

Pontelli, E., Son, T. C., & El-Khatib, O. (2009). Justifications for logic programs under
answer set semantics. Theory Pract. Log. Program., 9(1), 1–56.

Poppe, O., Lei, C., Rundensteiner, E. A., & Maier, D. (2019). Event trend aggregation
under rich event matching semantics. SIGMOD, 555–572.

Przymusinski, T. C. (1988). On the declarative semantics of deductive databases and logic
programs. In Foundations of deductive databases and logic programming (pp. 193–
216). Morgan Kaufmann.

Raedt, L. D., & Kimmig, A. (2015). Probabilistic (logic) programming concepts. Mach.
Learn., 100(1), 5–47.

Reiter, R. (1977). On closed world data bases. Logic and Data Bases, 55–76.

Riguzzi, F. (2023). Foundations of probabilistic logic programming: Languages, semantics,
inference and learning, 2nd edition. River Publishers.

Riguzzi, F., & Swift, T. (2013). Well-definedness and efficient inference for probabilistic
logic programming under the distribution semantics. Theory Pract. Log. Program.,
13(2), 279–302.

Riguzzi, F., & Swift, T. (2018). A survey of probabilistic logic programming. In Declara-
tive logic programming: Theory, systems, and applications (pp. 185–228). ACM an
Morgan & Claypool.

Ronca, A., Kaminski, M., Grau, B. C., & Horrocks, I. (2022). The delay and window size
problems in rule-based stream reasoning. Artif. Intell., 306, 103668.

Rondogiannis, P. (2001). Stratified negation in temporal logic programming and the cycle-
sum test. Theor. Comput. Sci., 254(1-2), 663–676.

Ryzhyk, L., & Budiu, M. (2019). Differential datalog. Datalog 2.0 Workshop in LPNMR,
2368, 56–67.

Sakama, C., Inoue, K., & Sato, T. (2021). Logic programming in tensor spaces. Ann. Math.
Artif. Intell., 89(12), 1133–1153.

Santipantakis, G. M., Vlachou, A., Doulkeridis, C., Artikis, A., Kontopoulos, I., & Vouros,
G. A. (2018). A stream reasoning system for maritime monitoring. TIME, 120, 20:1–
20:17.

Sato, T. (1995). A statistical learningmethod for logic programswith distribution semantics.
ICLP, 715–729.

Sato, T. (2008). A glimpse of symbolic-statistical modeling by prism. J. Intell. Inf. Syst., 31,
161–176.

Sato, T. (2017a). Embedding tarskian semantics in vector spaces. AAAI Workshop, WS-
17.

203 P. Mantenoglou

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Sato, T. (2017b). A linear algebraic approach to datalog evaluation. Theory Pract. Log.
Program., 17(3), 244–265.

Selman, J., Amer, M. R., Fern, A., & Todorovic, S. (2011). PEL-CNF: Probabilistic event
logic conjunctive normal form for video interpretation. ICCV Workshops, 680–687.

Sergot, M. J. (2001). A computational theory of normative positions. ACM Trans. Comput.
Log., 2(4), 581–622.

Shahid, N. S., O’Keeffe, D., & Stathis, K. (2021). Game-theoretic simulations with cognitive
agents. ICTAI, 1300–1305.

Shahid, N. S., O’Keeffe, D., & Stathis, K. (2023). A knowledge representation framework
for evolutionary simulations with cognitive agents. ICTAI, 361–368.

Shanahan, M. (1999). The event calculus explained. In Artificial intelligence today
(pp. 409–430). Springer.

Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., & Zaniolo, C. (2016). Big data
analytics with datalog queries on spark. SIGMOD Conference, 1135–1149.

Shterionov, D. S., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., & Janssens, G.
(2014). The most probable explanation for probabilistic logic programs with anno-
tated disjunctions. ILP, 9046, 139–153.

Singh, T., & Vishwakarma, D. K. (2019). Video benchmarks of human action datasets: A
review. Artif. Intell. Rev., 52(2), 1107–1154.

Sirbu, M. (1997). Credits and debits on the Internet. IEEE Spectrum, 34(2), 23–29.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual perception using
force dynamics and event logic. J. Artif. Intell. Res., 15, 31–90.

Skarlatidis, A., Artikis, A., Filipou, J., & Paliouras, G. (2015a). A probabilistic logic pro-
gramming event calculus. Theory Pract. Log. Program., 15(2), 213–245.

Skarlatidis, A., Paliouras, G., Artikis, A., & Vouros, G. A. (2015b). Probabilistic event cal-
culus for event recognition. ACM Trans. Comput. Log., 16(2).

Srinivasan, A., Bain, M., & Baskar, A. (2022). Learning explanations for biological feedback
with delays using an event calculus. Mach. Learn., 111(7), 2435–2487.

Sugiura, K., & Ishikawa, Y. (2019). Regular expression pattern matching with sliding win-
dows over probabilistic event streams. IEEE BigComp, 1–8.

Sugiura, K., & Ishikawa, Y. (2020). Multiple regular expression pattern monitoring over
probabilistic event streams. IEICE Trans. Inf. Syst., 103-D(5), 982–991.

Terry, D. B., Goldberg, D., Nichols, D. A., & Oki, B. M. (1992). Continuous queries over
append-only databases. SIGMOD, 321–330.

Thomas, R. (1991). Regulatory networks seen as asynchronous automata: A logical de-
scription. Journal of Theoretical Biology, 153(1), 1–23.

P. Mantenoglou 204

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Thomas, R., & d’Ari, R. (1990). Biological feedback. CRC Press.

Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient
inference and applications. Mach. Learn., 82(2), 239–272.

Tiger, M., & Heintz, F. (2020). Incremental reasoning in probabilistic signal temporal logic.
Int. J. Approx. Reason., 119, 325–352.

Tsilionis, E., Artikis, A., & Paliouras, G. (2022). Incremental event calculus for run-time
reasoning. J. Artif. Intell. Res., 73, 967–1023.

Tsilionis, E., Artikis, A., & Paliouras, G. (2024). A tensor-based formalization of the event
calculus. IJCAI. https : / /cer . iit .demokritos .gr /publications/papers /2024/ tensor -
EC.pdf

Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM J.
Comput., 8(3), 410–421.

van der Heijden, M., & Lucas, P. J. F. (2013). Describing disease processes using a prob-
abilistic logic of qualitative time. Artif. Intell. Medicine, 59(3), 143–155.

van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-founded semantics for general
logic programs. J. ACM, 38(3), 620–650.

Vennekens, J., Denecker, M., & Bruynooghe, M. (2009). CP-logic: A language of causal
probabilistic events and its relation to logic programming. Theory Pract. Log. Pro-
gram., 9(3), 245–308.

Vennekens, J., Verbaeten, S., & Bruynooghe, M. (2004). Logic programs with annotated
disjunctions. ICLP, 3132, 431–445.

Verwiebe, J., Grulich, P. M., Traub, J., & Markl, V. (2023). Survey of window types for
aggregation in stream processing systems. VLDB J., 32(5), 985–1011.

Vidal, G. (2022). Explanations as programs in probabilistic logic programming. FLOPS,
13215, 205–223.

Vidal, G. (2024). Explaining explanations in probabilistic logic programming. CoRR,
abs/2401.17045.

Vilamala, M. R., Xing, T., Taylor, H., Garcia, L., Srivastava, M., Kaplan, L. M., Preece, A. D.,
Kimmig, A., & Cerutti, F. (2023). Deepprobcep: A neuro-symbolic approach for com-
plex event processing in adversarial settings. Expert Syst. Appl., 215, 119376.

Walega, P. A., Kaminski, M., & Grau, B. C. (2019). Reasoning over streaming data in
metric temporal datalog. AAAI, 3092–3099.

Walega, P. A., Kaminski, M., Wang, D., & Grau, B. C. (2023). Stream reasoning with dat-
alogmtl. J. Web Semant., 76, 100776.

Wan, H. (2009). Belief logic programming with cyclic dependencies. RR, 5837, 150–165.

White, W. M., Riedewald, M., Gehrke, J., & Demers, A. J. (2007). What is ”next” in event
processing? PODS, 263–272.

205 P. Mantenoglou

https://cer.iit.demokritos.gr/publications/papers/2024/tensor-EC.pdf
https://cer.iit.demokritos.gr/publications/papers/2024/tensor-EC.pdf

Reasoning over Complex Temporal Specifications and Noisy Data Streams

Wooldridge, M. J. (2009). An introduction to multiagent systems, second edition. Wiley.

Wu, E., Diao, Y., & Rizvi, S. (2006). High-performance complex event processing over
streams. SIGMOD, 407–418.

Wu, J., Wang, J., & Zaniolo, C. (2022). Optimizing parallel recursive datalog evaluation on
multicore machines. SIGMOD Conference, 1433–1446.

Xing, T., Garcia, L., Vilamala, M. R., Cerutti, F., Kaplan, L., Preece, A., & Srivastava, M.
(2020). Neuroplex: Learning to detect complex events in sensor networks through
knowledge injection. SenSys, 489–502.

Yolum, P., & Singh, M. P. (2002). Flexible protocol specification and execution: Applying
event calculus planning using commitments. AAMAS, 527–534.

Yu, D., Yang, B., Liu, D., Wang, H., & Pan, S. (2023). A survey on neural-symbolic learning
systems. Neural Networks, 166, 105–126.

Zaniolo, C. (2012). Logical foundations of continuous query languages for data streams.
Datalog in Academia and Industry.

Zervoudakis, P., Kondylakis, H., Spyratos, N., & Plexousakis, D. (2021). Query rewriting
for incremental continuous query evaluation in HIFUN. Algorithms, 14(5), 149.

Zhang, H., Diao, Y., & Immerman, N. (2013). Recognizing patterns in streams with impre-
cise timestamps. Inf. Syst., 38(8), 1187–1211.

Zhang, H., Diao, Y., & Immerman, N. (2014). On complexity and optimization of expensive
queries in complex event processing. SIGMOD Conference, 217–228.

Zhao, B., van der Aa, H., Nguyen, T. T., Nguyen, Q. V. H., & Weidlich, M. (2021). EIRES:
efficient integration of remote data in event stream processing. SIGMOD, 2128–
2141.

Zielinski, B. (2023). Explanatory denotational semantics for complex event patterns. For-
mal Aspects Comput., 35(4), 23:1–23:37.

Zocholl, M., Iphar, C., Pitsikalis, M., Jousselme, A., Artikis, A., & Ray, C. (2019). Evaluation
of maritime event detection against missing data. QUATIC, 1010, 275–288.

P. Mantenoglou 206

	CONTENTS
	INTRODUCTION
	Motivation
	Stream Reasoning over Complex Temporal Specifications
	Reasoning over Noisy Data Streams
	Applications
	Composite Event Recognition
	Multi-Agent Systems
	Biological Feedback Processes

	Contributions
	Stream Reasoning over Complex Temporal Specifications
	Reasoning over Noisy Data Streams
	Publications

	Thesis Outline

	BACKGROUND: STREAM REASONING
	Logic Programming Concepts
	The Event Calculus
	The Run-Time Event Calculus (RTEC)
	Allen's Interval Algebra
	Literature Review

	STREAM REASONING OVER COMPLEX TEMPORAL SPECIFICATIONS
	A Formal Account of RTEC
	RTECcyc: Reasoning over Specifications with Cyclic Dependencies
	Motivation
	Semantics
	Reasoning
	Correctness and Complexity
	Discussion

	RTECdl: Reasoning over Streams of Events with Delayed Effects
	Motivation
	Representation
	Semantics
	Reasoning
	Correctness and Complexity
	Discussion

	RTECa: Reasoning over Specifications with Allen Relations
	Motivation
	Representation
	Semantics
	Reasoning
	Correctness and Complexity
	Discussion

	EXPERIMENTAL EVALUATION OF RTECcyc, RTECdl AND RTECa
	Experimental Setup
	Applications
	Competing Frameworks

	Experimental Results
	Stream Reasoning with RTECcyc
	Stream Reasoning with RTECdl
	Stream Reasoning with RTECa

	Discussion

	BACKGROUND: REASONING UNDER UNCERTAINTY
	Probabilistic Logic Programming
	Probabilistic Event Calculus
	Probabilistic Interval-based Event Calculus
	Literature Review

	REASONING OVER NOISY DATA STREAMS
	Online Probabilistic Interval-based Event Calculus (oPIEC)
	Support Set
	Interval Computation
	Correctness and Complexity

	oPIEC with Bounded Memory
	Support Set Maintenance with oPIECdp
	Support Set Maintenance with oPIECst
	Complexity of Support Set Maintenance

	Discussion

	EXPERIMENTAL EVALUATION OF oPIEC
	Experimental Setup
	Experimental Results
	Discussion

	SUMMARY AND FUTURE WORK
	Summary
	Future Work

	ABBREVIATIONS - ACRONYMS
	APPENDICES
	PROOFS FOR PROPOSITIONS OF CHAPTER 3: SEMANTICS
	The Cycle-Sum Test
	Proof of Proposition 2
	Proof of Proposition 5
	Proof of Proposition 9

	PROOFS FOR PROPOSITIONS OF CHAPTER 3: CORRECTNESS AND COMPLEXITY
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 10

	PROOFS FOR PROPOSITIONS OF CHAPTER 6
	Proof of Proposition 11
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 13

	REFERENCES

