
Reasoning over Complex Temporal

Specifications and Noisy Data Streams

Periklis Mantenoglou

National and Kapodistrian University of Athens, Greece
NCSR Demokritos, Greece

Stream Reasoning

INPUT ▶ REASONING ▶ OUTPUT ▶

Stream
Reasoning
System

Complex Temporal
Specifications

Streams of
Events

.

.

Streams of
Situations of Interest

.

.

1

Complex Event Recognition

INPUT ▶ REASONING ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Temporal
Specifications

Streams of
Simple Events

.

.

Streams of
Complex Events

.

.

1

Requirements and Motivation
Requirements:

▶ Temporal specification language:
▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.

▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.

▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.

▶ Background Knowledge.
▶ Highly efficient reasoning algorithms:

▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:

▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.

▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:

▶ Event Calculus:
▶ Temporal formalism based on logic programming.

▶ Run-Time Event Calculus (RTEC):
▶ Event Calculus + windowing and caching

▶ Probabilistic Interval-based Event Calculus (PIEC):
▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:

▶ Event Calculus:
▶ Temporal formalism based on logic programming.

▶ Run-Time Event Calculus (RTEC):
▶ Event Calculus + windowing and caching

▶ Probabilistic Interval-based Event Calculus (PIEC):
▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.

▶ Run-Time Event Calculus (RTEC):
▶ Event Calculus + windowing and caching

▶ Probabilistic Interval-based Event Calculus (PIEC):
▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching

▶ Probabilistic Interval-based Event Calculus (PIEC):
▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Motivation: No framework fulfills all requirements.

Contributions:

▶ RTECo: RTEC + cyclic dependencies.

▶ RTEC→: RTEC + events with delayed effects.

▶ RTECA: RTEC + Allen relations.

▶ oPIEC: PIEC + data streams.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Motivation: No framework fulfills all requirements.
Contributions:

▶ RTECo: RTEC + cyclic dependencies.

▶ RTEC→: RTEC + events with delayed effects.

▶ RTECA: RTEC + Allen relations.

▶ oPIEC: PIEC + data streams.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Motivation: No framework fulfills all requirements.
Contributions:

▶ RTECo: RTEC + cyclic dependencies.

▶ RTEC→: RTEC + events with delayed effects.

▶ RTECA: RTEC + Allen relations.

▶ oPIEC: PIEC + data streams.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Motivation: No framework fulfills all requirements.
Contributions:

▶ RTECo: RTEC + cyclic dependencies.

▶ RTEC→: RTEC + events with delayed effects.

▶ RTECA: RTEC + Allen relations.

▶ oPIEC: PIEC + data streams.

2

Requirements and Motivation
Requirements:
▶ Temporal specification language:

▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Motivation: No framework fulfills all requirements.
Contributions:

▶ RTECo: RTEC + cyclic dependencies.

▶ RTEC→: RTEC + events with delayed effects.

▶ RTECA: RTEC + Allen relations.

▶ oPIEC: PIEC + data streams.
2

Publications
Journal Publications:

▶ Mantenoglou P., Pitsikalis M., Artikis A., Reasoning over Streams of Events with Delayed
Effects.
In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since
January 2024.

▶ Mantenoglou P., Artikis A., Paliouras G., Online Event Recognition over Noisy Data
Streams.
In International Journal of Approximate Reasoning (IJAR), 161, 2023.
DOI: https: // doi. org/ 10. 1016/ j. ijar. 2023. 108993

Conference Publications:
▶ Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations.

In Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 502–511, 2023.
DOI: https: // doi. org/ 10. 24963/ kr. 2023/ 49

▶ Mantenoglou P., Pitsikalis M., Artikis A., Stream Reasoning with Cycles.
In Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 533–553, 2022.
DOI: https: // doi. org/ 10. 24963/ kr. 2022/ 56

▶ Mantenoglou P., Artikis A., Paliouras G., Online Probabilistic Interval-based Event Calculus.

In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI),
pp. 2624–2631, 2020.
DOI: https: // doi. org/ 10. 3233/ FAIA200399

Peripheral Publication:
▶ Andrienko N., Andrienko G., Artikis A., Mantenoglou P., Rinzivillo S., Human-in-the-Loop:

Visual Analytics for Building Models Recognising Behavioural Patterns in Time Series.
In IEEE Computer Graphics and Applications (CG&A), pp. 1–15, 2024.
DOI: https: // doi. org/ 10. 1109/ MCG. 2024. 3379851

3

https://doi.org/10.1016/j.ijar.2023.108993
https://doi.org/10.24963/kr.2023/49
https://doi.org/10.24963/kr.2022/56
https://doi.org/10.3233/FAIA200399
https://doi.org/10.1109/MCG.2024.3379851

Event Calculus

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsAt(F =V ,T) The value of fluent F is V at time T

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

Kowalski et al., A Logic-based Calculus of Events. New Gener. Comput. 4(1): 67–95, 1986.

4

Stream Reasoning with RTEC

INPUT ▶ REASONING ▶ OUTPUT ▶

RTEC

Complex Temporal
Specifications

Streams of
Events

.

.

Streams of
Situations of Interest

.

.

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

5

Stream Reasoning with RTEC

INPUT ▶ REASONING ▶ OUTPUT ▶

RTEC

Complex Temporal
Specifications

Streams of
Events

.

.

happensAt(slowSpeedStart(ID0), t1)
happensAt(turn(ID0 , 11), t2)
happensAt(turn(ID0 , 12), t3)
happensAt(slowSpeedEnd(ID0), t4)
...

Streams of
Situations of Interest

.

.

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

5

Stream Reasoning with RTEC

INPUT ▶ REASONING ▶ OUTPUT ▶

RTEC

Complex Temporal
Specifications

Streams of
Events

.

.

happensAt(slowSpeedStart(ID0), t1)
happensAt(turn(ID0 , 11), t2)
happensAt(turn(ID0 , 12), t3)
happensAt(slowSpeedEnd(ID0), t4)
...

Streams of
Situations of Interest

.

.

initiatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop start(V essel), T),
holdsAt(withinArea(V essel, nearPorts)= true, T).

terminatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop end(V essel), T).

...

holdsFor(trawling(V essel)= true, I)←
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

5

Stream Reasoning with RTEC

INPUT ▶ REASONING ▶ OUTPUT ▶

RTEC

Complex Temporal
Specifications

Streams of
Events

.

.

happensAt(slowSpeedStart(ID0), t1)
happensAt(turn(ID0 , 11), t2)
happensAt(turn(ID0 , 12), t3)
happensAt(slowSpeedEnd(ID0), t4)
...

Streams of
Situations of Interest

.

.

holdsFor(trawling(ID0)= true, [ts0 , te0])
holdsFor(drifting(ID1)= true, [ts1 , te1])
holdsFor(loitering(ID3)= true, [ts2 , te2])
...

initiatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop start(V essel), T),
holdsAt(withinArea(V essel, nearPorts)= true, T).

terminatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop end(V essel), T).

...

holdsFor(trawling(V essel)= true, I)←
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

5

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T),
holdsAt(withinArea(Vessel , nearCoast)= true,T),
threshold(vhs ,V),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(velocity(Vessel ,Speed),T),
threshold(vhs ,V),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T)←
happensAt(end(withinArea(Vessel , nearCoast)= true),T).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I)

highSpeedNC

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V

6

Hierarchical Knowledge Bases

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

6

Hierarchical Knowledge Bases

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging

Semantics

An event description of RTEC is a locally stratified logic program.

6

Cyclic Dependencies in Temporal Patterns

▶ Multi-Agent Systems: Voting & NetBill.

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

permission
=false

quote=true

suspended
=true

contract
=true

power
=true

obligation
=true

▶ Biological Feedback Processes.

h
OR

s
OR

e

+2 +1
+1

-2

cI cro

cII n

-2

-1

-2

+1

+1 -2
-1

-3

+2 -3

▶ Maritime Situational Awareness: the stages of a fishing trip,
i.e., started, fishing, returning, ended, form a cycle.

7

Cyclic Dependencies in Temporal Patterns

▶ Multi-Agent Systems: Voting & NetBill.

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

permission
=false

quote=true

suspended
=true

contract
=true

power
=true

obligation
=true

▶ Biological Feedback Processes.

h
OR

s
OR

e

+2 +1
+1

-2

cI cro

cII n

-2

-1

-2

+1

+1 -2
-1

-3

+2 -3

▶ Maritime Situational Awareness: the stages of a fishing trip,
i.e., started, fishing, returning, ended, form a cycle.

7

Cyclic Dependencies in Temporal Patterns

▶ Multi-Agent Systems: Voting & NetBill.

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

permission
=false

quote=true

suspended
=true

contract
=true

power
=true

obligation
=true

▶ Biological Feedback Processes.

h
OR

s
OR

e

+2 +1
+1

-2

cI cro

cII n

-2

-1

-2

+1

+1 -2
-1

-3

+2 -3

▶ Maritime Situational Awareness: the stages of a fishing trip,
i.e., started, fishing, returning, ended, form a cycle.

7

1. RTECo: Cyclic Dependencies

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
of Knowledge Representation and Reasoning (KR), 544–553, 2022. 8

1. RTECo: Cyclic Dependencies

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
of Knowledge Representation and Reasoning (KR), 544–553, 2022. 8

1. RTECo: Cyclic Dependencies

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
of Knowledge Representation and Reasoning (KR), 544–553, 2022. 8

1. RTECo: Cyclic Dependencies

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
of Knowledge Representation and Reasoning (KR), 544–553, 2022. 8

1. RTECo: Cyclic Dependencies

status
=proposed

status
=voting

status
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
of Knowledge Representation and Reasoning (KR), 544–553, 2022. 8

1. RTECo: Formal Properties

Semantics

An event description of RTECo is a locally stratified logic program.

Correctness

RTECo computes all maximal intervals of the fluents of an event
description with cyclic dependencies, and no other interval.

Complexity

In RTECo, the worst-case time complexity of maximal interval
computation for a fluent definition with cyclic dependencies is
O(ωlog(ω)), where ω is the size of the window.

9

1. RTECo: Formal Properties

Semantics

An event description of RTECo is a locally stratified logic program.

Correctness

RTECo computes all maximal intervals of the fluents of an event
description with cyclic dependencies, and no other interval.

Complexity

In RTECo, the worst-case time complexity of maximal interval
computation for a fluent definition with cyclic dependencies is
O(ωlog(ω)), where ω is the size of the window.

9

1. RTECo: Formal Properties

Semantics

An event description of RTECo is a locally stratified logic program.

Correctness

RTECo computes all maximal intervals of the fluents of an event
description with cyclic dependencies, and no other interval.

Complexity

In RTECo, the worst-case time complexity of maximal interval
computation for a fluent definition with cyclic dependencies is
O(ωlog(ω)), where ω is the size of the window.

9

1. RTECo: Indicative Experimental Results

NetBill: monitoring active quotes

510 20 40
1

101

102

103

104

105

106

R
e
a
so

n
in
g
ti
m
e
(m

s)

4K8K16K 32K

Number of events

RTECo s(CASP)∗ Fusemate† Ticker‡ Logica§ jREC¶

∗Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer
set programming. Theory and Practice of Logic Programming, 2022.

†Baumgartner, Combining Event Calculus and Description Logic Reasoning via Logic
Programming. Frontiers of Combining Systems, 2021.

‡Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and
Practice of Logic Programming, 2017.

§Logica: Language of Big Data, https://github.com/EvgSkv/logica.
¶Falcionelli et al., Indexing the Event Calculus: Towards practical human-readable Personal

Health Systems. Artificial Intelligence in Medicine, 2019.

10

https://github.com/EvgSkv/logica

1. RTECo: Indicative Experimental Results

NetBill: monitoring active quotes

510 20 40
1

101

102

103

104

105

106

R
e
a
so

n
in
g
ti
m
e
(m

s)

4K8K16K 32K

Number of events

Voting: monitoring the
status of motions (cycles)

800 1.6K3.2K 6.4K
1

101

102

103

104

105

106

Number of events

RTECo s(CASP)∗ Fusemate† Ticker‡ Logica§ jREC¶

∗Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer
set programming. Theory and Practice of Logic Programming, 2022.

†Baumgartner, Combining Event Calculus and Description Logic Reasoning via Logic
Programming. Frontiers of Combining Systems, 2021.

‡Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and
Practice of Logic Programming, 2017.

§Logica: Language of Big Data, https://github.com/EvgSkv/logica.
¶Falcionelli et al., Indexing the Event Calculus: Towards practical human-readable Personal

Health Systems. Artificial Intelligence in Medicine, 2019. 10

https://github.com/EvgSkv/logica

Events with Delayed Effects

▶ Biological Feedback Processes: the values of the biological
variables in a feedback loop change with time delays.

▶ Maritime Situational Awareness: a fishing activity is
terminated with a delay after multiple changes in heading.

▶ Multi-Agent Systems: agents may be suspended temporarily.
Further violations may extend the period of suspension.

▶ RTEC supports only immediate initiations:

initiatedAt(F =V ,T)←
happensAt(E ,T)[,
conditions].

where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn.

11

Events with Delayed Effects

▶ Biological Feedback Processes: the values of the biological
variables in a feedback loop change with time delays.

▶ Maritime Situational Awareness: a fishing activity is
terminated with a delay after multiple changes in heading.

▶ Multi-Agent Systems: agents may be suspended temporarily.
Further violations may extend the period of suspension.

▶ RTEC supports only immediate initiations:

initiatedAt(F =V ,T)←
happensAt(E ,T)[,
conditions].

where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn.

11

Events with Delayed Effects

▶ Biological Feedback Processes: the values of the biological
variables in a feedback loop change with time delays.

▶ Maritime Situational Awareness: a fishing activity is
terminated with a delay after multiple changes in heading.

▶ Multi-Agent Systems: agents may be suspended temporarily.
Further violations may extend the period of suspension.

▶ RTEC supports only immediate initiations:

initiatedAt(F =V ,T)←
happensAt(E ,T)[,
conditions].

where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn.

11

Events with Delayed Effects

▶ Biological Feedback Processes: the values of the biological
variables in a feedback loop change with time delays.

▶ Maritime Situational Awareness: a fishing activity is
terminated with a delay after multiple changes in heading.

▶ Multi-Agent Systems: agents may be suspended temporarily.
Further violations may extend the period of suspension.

▶ RTEC supports only immediate initiations:

initiatedAt(F =V ,T)←
happensAt(E ,T)[,
conditions].

where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn.

11

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).

▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).
▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).
▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).
▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.

▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).
▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.

▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G)= in effect, quote(M,C ,G)= expiring , 50).
▶ p(quote(M,C ,G)= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

12

2. RTEC→: Formal Properties

Semantics

An event description of RTEC→ is a locally stratified logic
program.

Correctness

RTEC→ computes all maximal intervals of the fluents of an event
description with events with delayed effects, and no other interval.

Complexity

In RTEC→, the worst-case time complexity of maximal interval
computation for a fluent definition with events with delayed effects
is O(ωlog(ω)), where ω is the size of the window.

13

2. RTEC→: Formal Properties

Semantics

An event description of RTEC→ is a locally stratified logic
program.

Correctness

RTEC→ computes all maximal intervals of the fluents of an event
description with events with delayed effects, and no other interval.

Complexity

In RTEC→, the worst-case time complexity of maximal interval
computation for a fluent definition with events with delayed effects
is O(ωlog(ω)), where ω is the size of the window.

13

2. RTEC→: Formal Properties

Semantics

An event description of RTEC→ is a locally stratified logic
program.

Correctness

RTEC→ computes all maximal intervals of the fluents of an event
description with events with delayed effects, and no other interval.

Complexity

In RTEC→, the worst-case time complexity of maximal interval
computation for a fluent definition with events with delayed effects
is O(ωlog(ω)), where ω is the size of the window.

13

2. RTEC→: Indicative Experimental
Results

Biological Processes:
Immune Response and Phage Infection

(delayed effects & cycles)

20
0
40

0
80

0
16

00
1

101

102

103

104

105

106

R
e
a
so

n
in
g
ti
m
e
(m

s)

20
0
40

0
80

0
16

00

Number of events

RTEC→ GKL-EC∗

∗Srinivasan et al., Learning explanations for biological feedback with delays using an event
calculus. Machine Learning, 2022.

14

The Relations of Allen’s Interval Algebra

Relation Illustration

before(i s , i t)
i s

i t

meets(i s , i t)
i s

i t

starts(i s , i t)
i s

i t

finishes(i s , i t)
i s

i t

during(i s , i t)
i s

i t

overlaps(i s , i t)
i s

i t

equal(i s , i t)
i s

i t

15

3. RTECA: Allen Relations

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

S
T

Time

is1 is2

it1 it2

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

16

3. RTECA: Allen Relations

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

S
T

Time

is1 is2

it1 it2

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

16

3. RTECA: Allen Relations

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

S
T

Time

is1 is2

it1 it2

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

16

3. RTECA: Allen Relations

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

S
T

I

Time

is1 is2

it1 it2

i

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

16

3. RTECA: Formal Properties

Semantics

An event description of RTECA is a locally stratified logic program.

Correctness

RTECA computes all maximal intervals of the fluents of an event
description with Allen relations, and no other interval.

Complexity

In RTECA, the worst-case time complexity of maximal interval
computation for a fluent definition with Allen relations O(ω),
where ω is the size of the window.

17

3. RTECA: Formal Properties

Semantics

An event description of RTECA is a locally stratified logic program.

Correctness

RTECA computes all maximal intervals of the fluents of an event
description with Allen relations, and no other interval.

Complexity

In RTECA, the worst-case time complexity of maximal interval
computation for a fluent definition with Allen relations O(ω),
where ω is the size of the window.

17

3. RTECA: Formal Properties

Semantics

An event description of RTECA is a locally stratified logic program.

Correctness

RTECA computes all maximal intervals of the fluents of an event
description with Allen relations, and no other interval.

Complexity

In RTECA, the worst-case time complexity of maximal interval
computation for a fluent definition with Allen relations O(ω),
where ω is the size of the window.

17

3. RTECA: Indicative Experimental
Results

Monitoring maritime activities with Allen relations

Window size Reasoning Time (ms)
Output
Intervals

Days
Input

Intervals
RTECA D2IA∗ RTECA D2IA∗

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K
16 297K 285 2.7K 77K 76K

∗Awad et al, D2IA: User-defined interval analytics on distributed streams. Information
Systems, 2022.

18

3. RTECA: Indicative Experimental
Results

Monitoring maritime activities with Allen relations

Window size Reasoning Time (ms)
Output
Intervals

Days
Input

Intervals
RTECA D2IA∗ RTECA D2IA∗

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K
16 297K 285 2.7K 77K 76K

∗Awad et al, D2IA: User-defined interval analytics on distributed streams. Information
Systems, 2022.

18

3. RTECA: Indicative Experimental
Results

Monitoring maritime activities with Allen relations

Window size Reasoning Time (ms)
Output
Intervals

Days
Input

Intervals
RTECA D2IA∗ RTECA D2IA∗

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K
16 297K 285 2.7K 77K 76K

∗Awad et al, D2IA: User-defined interval analytics on distributed streams. Information
Systems, 2022.

18

4. Stream Reasoning with oPIEC

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

oPIEC

Complex Event
Definitions

Simple Event Stream

.

.

Complex Event Stream

.

.

19

4. Stream Reasoning with oPIEC

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

oPIEC

Complex Event
Definitions

Simple Event Stream

.

.

...

0 .70 :: happensAt(walking(mike), 1)
0 .46 :: happensAt(walking(sarah), 1)
...
0 .69 :: happensAt(walking(mike), 21)
0 .58 :: happensAt(walking(sarah), 21)
...

Complex Event Stream

.

.

19

4. Stream Reasoning with oPIEC

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

oPIEC

Complex Event
Definitions

Simple Event Stream

.

.

...

0 .70 :: happensAt(walking(mike), 1)
0 .46 :: happensAt(walking(sarah), 1)
...
0 .69 :: happensAt(walking(mike), 21)
0 .58 :: happensAt(walking(sarah), 21)
...

Complex Event Stream

.

.

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

...

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

...

19

4. Stream Reasoning with oPIEC

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

oPIEC

Complex Event
Definitions

Simple Event Stream

.

.

...

0 .70 :: happensAt(walking(mike), 1)
0 .46 :: happensAt(walking(sarah), 1)
...
0 .69 :: happensAt(walking(mike), 21)
0 .58 :: happensAt(walking(sarah), 21)
...

Complex Event Stream

.

.

0 .61 :: holdsFor(moving(mike, sarah)= true, [2 , 18])
0 .87 :: holdsFor(meeting(mike, sarah)= true, [16 , 29])
...

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

...

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

...

19

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

20

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

20

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

20

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

Data Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)

...

20

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

Data Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1),T2)
0 .73 :: holdsAt(meeting(id1 , id5),T2)
0 .67 :: holdsAt(meeting(id0 , id5),T2)

...

20

Time-points vs Temporal Intervals

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Interval Probability: average
probability of the
time-points it contains.

▶ Probabilistic Maximal
Interval:
▶ interval probability above

a given threshold;
▶ no super-interval with

probability above the
threshold.

▶ Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals
of Mathematics and Artificial Intelligence, 2021.

21

Time-points vs Temporal Intervals

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Interval Probability: average
probability of the
time-points it contains.

▶ Probabilistic Maximal
Interval:
▶ interval probability above

a given threshold;
▶ no super-interval with

probability above the
threshold.

▶ Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals
of Mathematics and Artificial Intelligence, 2021.

21

Time-points vs Temporal Intervals

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Interval Probability: average
probability of the
time-points it contains.

▶ Probabilistic Maximal
Interval:
▶ interval probability above

a given threshold;
▶ no super-interval with

probability above the
threshold.

▶ Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals
of Mathematics and Artificial Intelligence, 2021.

21

Time-points vs Temporal Intervals

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Interval Probability: average
probability of the
time-points it contains.

▶ Probabilistic Maximal
Interval:
▶ interval probability above

a given threshold;
▶ no super-interval with

probability above the
threshold.

▶ Probabilistic maximal
interval computation via
maximal non-negative sum
interval computation.

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals
of Mathematics and Artificial Intelligence, 2021.

21

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

Data Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1),T2)
0 .73 :: holdsAt(meeting(id1 , id5),T2)
0 .67 :: holdsAt(meeting(id0 , id5),T2)

...

oPIEC =
PIEC +

support set

21

4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
happensAt(walking(P2),T),
holdsAt(close(P1 ,P2) = true,T),
holdsAt(similarOrientation(P1 ,P2) = true,T).

terminatedAt(moving(P1 ,P2) = true,T) ←
happensAt(walking(P1),T),
holdsAt(close(P1 ,P2) = false,T).

...

Event Calculus Axioms

holdsAt(F = V ,T) ←
initially(F = V),
not broken(F = V , 0 ,T).

holdsAt(F = V ,T) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T).

...

Data Stream

0 .73 :: happensAt(walking(id0),T1)
0 .79 :: happensAt(walking(id1),T1)
0 .92 :: happensAt(active(id5),T1)

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1),T2)
0 .73 :: holdsAt(meeting(id1 , id5),T2)
0 .67 :: holdsAt(meeting(id0 , id5),T2)

...

oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1), (T2 ,T5))
0 .88 :: holdsFor(meeting(id1 , id5), (T2 ,T4))
0 .66 :: holdsFor(meeting(id0 , id5), (T2 ,T9))

...

21

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Windowing.

22

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

▶ Windowing.

▶ Probabilistic maximal
interval computation.

22

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

▶ Windowing.

▶ Probabilistic maximal
interval computation.

▶ Caching potential starting
points.
▶ Discard time-point t iff

there is a t ′<t that can
be the starting point of a
probabilistic maximal
interval including t.

22

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

▶ Windowing.

▶ Probabilistic maximal
interval computation.

▶ Caching potential starting
points.
▶ Discard time-point t iff

there is a t ′<t that can
be the starting point of a
probabilistic maximal
interval including t.

22

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

▶ Windowing.

▶ Probabilistic maximal
interval computation.

▶ Caching potential starting
points.
▶ Discard time-point t iff

there is a t ′<t that can
be the starting point of a
probabilistic maximal
interval including t.

22

4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

▶ Windowing.

▶ Probabilistic maximal
interval computation.

▶ Caching potential starting
points.
▶ Discard time-point t iff

there is a t ′<t that can
be the starting point of a
probabilistic maximal
interval including t.

22

4. Online Interval-based Recognition with
oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.

23

4. Online Interval-based Recognition with
oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.

23

4. Online Interval-based Recognition with
oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.

23

4. Bounded Online Interval-based
Recognition with oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

Bounded Online Interval-based Recognition

▶ Complex event duration
statistics favor more recent
potential starting points.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International
Journal of Approximate Reasoning, 2023.

24

4. Bounded Online Interval-based
Recognition with oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

Bounded Online Interval-based Recognition

▶ Complex event duration
statistics favor more recent
potential starting points.

.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International
Journal of Approximate Reasoning, 2023.

24

4. Bounded Online Interval-based
Recognition with oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

Bounded Online Interval-based Recognition

▶ Complex event duration
statistics favor more recent
potential starting points.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International
Journal of Approximate Reasoning, 2023.

24

4. Bounded Online Interval-based
Recognition with oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

Online Interval-based Recognition

Bounded Online Interval-based Recognition

▶ Complex event duration
statistics favor more recent
potential starting points.

▶ Comparable accuracy to
batch reasoning.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International
Journal of Approximate Reasoning, 2023.

24

4. oPIEC: Indicative Experimental Results

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

f1
-s
co

re

0 10 20 30 40 50 0 10 20 30 40 50

Instantaneous Rec.—ProbEC, SEC∗ and PEC†

Interval-based Rec.—PIEC
Bounded Online Interval-based Rec.—oPIEC

memory size

moving meeting fighting

64 128 256 512 1024
1

101

102

103

104

105

number of events in stream

re
a
so

n
in
g
ti
m
e
(s
e
c
)

Instantaneous Rec.—SEC∗

Instantaneous Rec.—PEC†

Bounded Online Interval-based Rec.—oPIEC

moving

∗McAreavey et al., The event calculus in probabilistic logic programming with annotated
disjunctions. AAMAS, 2017.

†D’Asaro et al., Probabilistic reasoning about epistemic action narratives. Artificial
Intelligence, 2021. 25

Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec

†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec

Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec

Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec

Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec

Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec

Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.

27

Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.

27

Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.

27

Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.

27

Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.

27

Appendix

0

Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

1

Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

1

Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

1

Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

1

Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

1

Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I)

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

2

Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T) Event E occurs at time T

initiatedAt(F =V ,T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I)

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

2

Run-Time Event Calculus (RTEC):
Fluent Specification

Simple Fluents:

initiatedAt(F =V ,T)←
happensAt(EIn1 ,T)[,
conditions].

...
terminatedAt(F =V ,T)←

happensAt(ET1 ,T)[,
conditions].

...
where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

Statically Determined Fluents:

holdsFor(F =V , I)←
holdsFor(F1 =V1 , I1)[,
holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn =Vn, In),
intervalOperation(L1 , In+1), . . .
intervalOperation(Lm, I)].

where intervalOperation:
union all or
intersect all or
relative complement all

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC):
Fluent Specification

Simple Fluents:

initiatedAt(F =V ,T)←
happensAt(EIn1 ,T)[,
conditions].

...
terminatedAt(F =V ,T)←

happensAt(ET1 ,T)[,
conditions].

...
where conditions:
0−K [not] happensAt(Ek ,T),
0−M [not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

Statically Determined Fluents:

holdsFor(F =V , I)←
holdsFor(F1 =V1 , I1)[,
holdsFor(F2 =V2 , I2), . . .
holdsFor(Fn =Vn, In),
intervalOperation(L1 , In+1), . . .
intervalOperation(Lm, I)].

where intervalOperation:
union all or
intersect all or
relative complement all

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Fluent-Value Pair Computation

Definition:

initiatedAt(F =V , T)← terminatedAt(F =V , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(F =V , T)← terminatedAt(F =V , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

Reasoning:

time

0

4

Fluent-Value Pair Computation

Definition:

initiatedAt(F =V , T)← terminatedAt(F =V , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(F =V , T)← terminatedAt(F =V , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

Reasoning:

time

0

4

Fluent-Value Pair Computation

Definition:

initiatedAt(F =V , T)← terminatedAt(F =V , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(F =V , T)← terminatedAt(F =V , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

Reasoning:

time

0

4

Fluent-Value Pair Computation
Definition:

initiatedAt(F =V , T)← terminatedAt(F =V , T)←
happensAt(EIn1 , T), happensAt(ET1 , T),
[conditions] [conditions]

.
initiatedAt(F =V , T)← terminatedAt(F =V , T)←

happensAt(EIni , T), happensAt(ETj
, T),

[conditions] [conditions]

Reasoning: holdsFor(F =V , I)

time

0

4

RTEC Architecture

Run-time
Memory

Forget
Dynamic
Grounding

Compiled
Rules and

Declarations

Compiler

Offline Online

RTECDomain-Specific Rules

initiatedAt(rich(X)= true, T) ←
happensAt(win lottery(X), T).

terminatedAt(rich(X)= true, T) ←
happensAt(lose wallet(X), T).

initiatedAt(location(X) = Y, T) ←
happensAt(go to(X, Y), T).

holdsFor(happy(X)= true, I)←
holdsFor(rich(X)= true, I1),
holdsFor(location(X)= pub, I2),
union all([I1, I2], I).

Domain-Specific Declarations

grounding(win lottery(X))← person(X).
grounding(lose wallet(X))← person(X).
grounding(go to(X, Y))← person(X),

place(Y).
grounding(rich(X)= true)← person(X).
grounding(location(X)= Y)← person(X),

place(Y).
grounding(happy(X)= true)← person(X).

Data Stream

go to|1|1|chris|home
go to|9|9|chris|work
win lottery|13|13|chris
go to|17|17|chris|pub
lose wallet|19|19|chris

go to|21|21|chris|home
go to|29|29|chris|work

ωi−1

ωi

ωi+1

Output
Entity

Processing

Output Entity Stream

holdsFor(location(chris)= home, [(2, 10)])
holdsFor(location(chris)= work, [(10, inf)])

holdsFor(rich(chris)= true, [(14, 20)])
holdsFor(location(chris)= work, [(11, 18)])
holdsFor(location(chris)= pub, [(18, inf)])
holdsFor(happy(chris)= true, [(14, inf)])

holdsFor(location(chris)= pub, [(21, 22)])
holdsFor(location(chris)= home, [(22, 30)])
holdsFor(location(chris)= work, [(30, inf)])
holdsFor(happy(chris)= true, [(21, 22)])

5

RTEC: Windowing

time

Q177

ω

Q178 Q179 Q180 Q181 Q182

6

RTEC: Windowing

time

Q177

ω

Q178 Q179 Q180 Q181 Q182

time

Q182

ω

Q181Q180Q179Q178Q177

6

RTEC: Windowing

time

Q177

ω

Q178 Q179 Q180 Q181 Q182

time

Q182

ω

Q181Q180Q179Q178Q177

time

ω

Q182Q181Q180Q179Q178Q177

6

RTEC: Interval-based Reasoning

I1
I2
I3

Time

7

RTEC: Interval-based Reasoning

I1
I2
I3

Iu

union all([I1 , I2 , I3], Iu)

Time

7

RTEC: Interval-based Reasoning

I1
I2
I3

Iu
Ii

union all([I1 , I2 , I3], Iu)

intersect all([I1 , I2 , I3], Ii)

Time

7

RTEC: Interval-based Reasoning

I1
I2
I3

Iu
Ii
Ic

union all([I1 , I2 , I3], Iu)

intersect all([I1 , I2 , I3], Ii)

relative complement all(I1 , [I2 , I3], Ic)

Time

7

Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I)←
holdsFor(stopped(Vessel)= farFromPorts, Isf),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I).

Iwa

Isf

Time

8

Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I)←
holdsFor(stopped(Vessel)= farFromPorts, Isf),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I).

Iwa

Isf

Time
8

Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I)←
holdsFor(stopped(Vessel)= farFromPorts, Isf),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I).

Isa

Iwa

Isf

Time
8

Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I)←
holdsFor(stopped(Vessel)= farFromPorts, Isf),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I).

Isn

Isa

Iwa

Isf

Time
8

Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I)←
holdsFor(stopped(Vessel)= farFromPorts, Isf),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I).

I

Isn

Isa

Iwa

Isf

Time
8

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T) ←
happensAt(propose(P,M),T),
holdsAt(status(M)= null ,T).

initiatedAt(status(M)= voting ,T) ←
happensAt(second(S ,M),T),
holdsAt(status(M)= proposed ,T).

initiatedAt(status(M)= voted ,T) ←
happensAt(close ballot(C ,M),T),
holdsAt(status(M)= voting ,T).

initiatedAt(status(M)= null ,T) ←
happensAt(declare(C ,M,Res),T),
holdsAt(status(M)= voted ,T).

9

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

Handling Cyclic Dependencies

RTECo

time

ω

qiqi – ω

F1=V1

F2=V2

Event Calculus

time

ω

qiqi – ω

F1=V1

F2=V2

10

RTECo: Experimental Results

10
500
108

20
1K
132

40
2K
232

80
4K
464

0

2

4

6

8

10

Window size

R
e
a
so

n
in

g
ti
m

e
(s
e
c
)

(a) voting

10
13K
5K

20
27K
6K

40
53K
12K

80
106K
24K

0

2

4

6

8

10

Window size

(b) NetBill

RTECo RTECo-naive

11

RTECo: Experimental Results

2h
7K
5K

4h
13K
6K

8h
26K
9K

16h
53K
14K

0

0.5

1

1.5

2

Window size

R
e
a
so

n
in
g
ti
m
e
(s
e
c
)

(b) Brest
cyclic pattern incl.

2h
180K
104K

4h
360K
157K

8h
718K
264K

16h
1430K
479K

0

1

2

3

4

5

Window size

R
e
a
so

n
in
g
ti
m
e
(m

in
)

(c) all European seas
cycle pattern incl.

12

RTECo: Experimental Results

17K 35K 53K
0

100

200

300

400

R
e
a
so

n
in

g
ti
m

e
(m

s)
(a) Human

Activity Recognition

Window size
(number of input events)

6K 13K 19K
0

100

200

300

400

R
e
a
so

n
in

g
ti
m

e
(m

s)

(b) City
Transport Management

Window size
(number of input events)

13

Semantics of RTECo

happensAt

initiatedAt

terminatedAt

holdsAt

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(1, +)

(1, -)

(1, +)

The cycle-sum graph of an RTECo program.

14

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

time

ω

qiqi – ω

15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω

15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω

15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω
15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω
15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω
15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω
15

RTEC→: Deadlines

non-extensible

time

ω

qiqi – ω

extensible

time

ω

qiqi – ω
15

Handling Deadlines: Caching

time

ω

qiqi – ω

16

Handling Deadlines: Caching

time

ω

qiqi – ω

16

Handling Deadlines: Caching

time

ω

qiqi – ω

16

Handling Deadlines: Caching

time

ω

qiqi – ω

16

Handling Deadlines: Caching

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

Handling Deadlines: Caching

RTEC→

time

ω

qiqi – ω

RTEC→-naive

time

ω

qiqi – ω

16

RTEC→: Experimental Results

10
10K
3K

20
20K
5K

40
40K
9K

80
80K
17K

0

100K

200K

300K

Window size

R
u
le

e
v
a
lu
a
ti
o
n
s

(a) voting

10
6K
4K

20
11K
6K

40
22K
11K

80
44K
21K

0

100K

200K

300K

Window size

(b) NetBill;
with p

10
6K
3K

20
11K
5K

40
22K
9K

80
44K
17K

0

200K

400K

600K

800K

1M

Window size

(c) NetBill;
without p

RTEC→ RTEC→-naive

17

RTEC→: Experimental Results

2h
7K
5K

4h
13K
6K

8h
26K
9K

16h
53K
14K

0

0.2

0.4

0.6

0.8

R
e
a
so

n
in
g
ti
m
e
(s
e
c
)

2h
7K
2K

4h
13K
2K

8h
26K
3K

16h
53K
5K

Window size

2h
180K
43K

4h
360K
62K

8h
718K
103K

16h
1430K
183K

0

1

2

3

4

5

Window size

R
e
a
so

n
in
g
ti
m
e
(m

in
)

RTEC→ RTEC

18

Semantics of RTEC→

initiatedAt terminatedAt

(R-1, -)

...

(2, -)

(1, -)

(R, +)

(1, -)
...

(R-1, -)

The cycle-sum graph of an RTEC→ program.

19

RTECA: Allen Relations

holdsFor(suspiciousRendezVous(Vessel1 ,Vessel2)= true, I)←
holdsFor(gap(Vessel1)= farFromPorts, Ig1),
holdsFor(gap(Vessel2)= farFromPorts, Ig2),
holdsFor(proximity(Vessel1 ,Vessel2)= true, T),
union all([Ig1 , Ig2],S),
allen(during,S, T , target, I).

Ig1

Ig2

S
T

Isrv

Time

ig11

ig21

is1 is2

it1 it2

isrv1

20

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81

S
T

Query time: q81

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81

S
T

w81

Query time: q81

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81

S
T

w81

Query time: q81

is,q811

it,q811 it,q812

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81

S
T

I

w81

Query time: q81

is,q811

it,q811 it,q812

iq81

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81 q82

S
T

Query time: q82

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81 q82

S
T

w82

Query time: q82

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81 q82

S
T

w82

Query time: q82

is,q822

it,q822

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81 q82

S
T

w82

Query time: q82

is,q822

it,q822

21

RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I)←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T),
allen(meets,S, T , target, I).

q81 q82

S
T

I

w82

Query time: q82

is,q822

it,q822

iq82

21

RTECA: Experimental Evaluation

Batch setting.

Batch size Reasoning Time

Input
Intervals

RTECA AEGLE D2IA

200 1 980 2K
2K 14 4K 6K
20K 154 71.5K 395K
200K 1.8K MEM >3.6M

Streaming setting.

Window size Reasoning Time
Output

Interval Pairs

Days
Input

Intervals
RTECA D2IA RTECA D2IA

1 125 1 48 5K 5K
2 250 2 164 19K 18K
4 500 4 568 72K 71K
8 1K 8 1.7K 237K 236K
16 2K 15 7.8K 878K 874K

22

Instantaneous Recognition

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

23

Instantaneous Recognition

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(initiatedAt(moving(mike, sarah)= true, 1))=
P(happensAt(walking(mike), 1))×
P(happensAt(walking(sarah), 1))×
P(holdsAt(close(mike, sarah)= true, 1))×
P(holdsAt(orientation(mike, sarah)= true, 1))
= 0 .7 × 0 .46 × 1 × 1 = 0 .322

23

Instantaneous Recognition

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(CE =true, t))=
P(initiatedAt(CE =true, t−1)∨

(holdsAt(CE =true, t−1)∧
¬ terminatedAt(CE =true, t−1)))

23

Instantaneous Recognition

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(moving(mike, sarah)= true, 2))=
P(initiatedAt(moving(mike, sarah)= true, 1)∨

(holdsAt(moving(mike, sarah)= true, 1)∧
¬terminatedAt(moving(mike, sarah)= true, 1)))

= 0 .322+0×1−0 .322×0×1 = 0 .322

23

Instantaneous Recognition

2

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(moving(mike, sarah)= true, 2))=
P(initiatedAt(moving(mike, sarah)= true, 1)∨

(holdsAt(moving(mike, sarah)= true, 1)∧
¬terminatedAt(moving(mike, sarah)= true, 1)))

= 0 .322+0×1−0 .322×0×1 = 0 .322

23

Instantaneous Recognition

2

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .73 :: happensAt(walking(mike), 2).
0 .55 :: happensAt(active(sarah), 2). · · ·

23

Instantaneous Recognition

2

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .73 :: happensAt(walking(mike), 2).
0 .55 :: happensAt(active(sarah), 2). · · ·

P(holdsAt(moving(mike, sarah)= true, 3))=
P(initiatedAt(moving(mike, sarah)= true, 2)∨

(holdsAt(moving(mike, sarah)= true, 2)∧
¬terminatedAt(moving(mike, sarah)= true, 2)))

= 0+0 .322×1−0×0 .322×1 = 0 .322

23

Instantaneous Recognition

2

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).

23

Instantaneous Recognition

2

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).

P(holdsAt(moving(mike, sarah)= true, 21))=
P(initiatedAt(moving(mike, sarah)= true, 20)∨

(holdsAt(moving(mike, sarah)= true, 20)∧
¬terminatedAt(moving(mike, sarah)= true, 20)))

= 0+0 .322×1−0×0 .322×1 = 0 .322

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).

P(holdsAt(moving(mike, sarah)= true, 21))=
P(initiatedAt(moving(mike, sarah)= true, 20)∨

(holdsAt(moving(mike, sarah)= true, 20)∧
¬terminatedAt(moving(mike, sarah)= true, 20)))

= 0+0 .322×1−0×0 .322×1 = 0 .322

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·

P(initiatedAt(moving(mike, sarah)= true, 21))=
P(happensAt(walking(mike), 21))×
P(happensAt(walking(sarah), 21))×
P(holdsAt(close(mike, sarah)= true, 21))×
P(holdsAt(orientation(mike, sarah)= true, 21))
= 0 .39×0 .28×1×1 = 0 .11

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·

P(holdsAt(moving(mike, sarah)= true, 22))=
P(initiatedAt(moving(mike, sarah)= true, 21)∨

(holdsAt(moving(mike, sarah)= true, 21)∧
¬terminatedAt(moving(mike, sarah)= true, 21)))

= 0 .11+0 .322×1−0 .11×0 .322×1 = 0 .39

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(initiatedAt(moving(mike, sarah)= true, 40))=
P(happensAt(walking(mike), 40))×
P(happensAt(walking(sarah), 40))×
P(holdsAt(close(mike, sarah)= true, 40))×
P(holdsAt(orientation(mike, sarah)= true, 40))
= 0 .28×0 .18×1×1 = 0 .05

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(holdsAt(moving(mike, sarah)= true, 41))=
P(initiatedAt(moving(mike, sarah)= true, 40)∨

(holdsAt(moving(mike, sarah)= true, 40)∧
¬terminatedAt(moving(mike, sarah)= true, 40)))

= 0 .05+0 .79×1−0 .05×0 .79×1 = 0 .80

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(holdsAt(moving(mike, sarah)= true, 41))=
P(initiatedAt(moving(mike, sarah)= true, 40)∨

(holdsAt(moving(mike, sarah)= true, 40)∧
¬terminatedAt(moving(mike, sarah)= true, 40)))

= 0 .05+0 .79×1−0 .05×0 .79×1 = 0 .80

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·

P(terminatedAt(moving(mike, sarah)= true, 41))=
P(happensAt(walking(mike), 41))×
P(holdsAt(close(mike, sarah)= false, 41))
= 0 .18×1 = 0 .18

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·

P(holdsAt(moving(mike, sarah)= true, 42))=
P(initiatedAt(moving(mike, sarah)= true, 41)∨

(holdsAt(moving(mike, sarah)= true, 41)∧
¬terminatedAt(moving(mike, sarah)= true, 41)))

= 0+0 .8×(1 − 0 .18)−0×0 .8×(1 − 0 .18)= 0 .66

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

P(terminatedAt(moving(mike, sarah)= true, 49))=
P(happensAt(walking(mike), 49))×
P(holdsAt(close(mike, sarah)= false, 49))
= 1×1 = 1

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

P(holdsAt(moving(mike, sarah)= true, 50))=
P(initiatedAt(moving(mike, sarah)= true, 49)∨

(holdsAt(moving(mike, sarah)= true, 49)∧
¬terminatedAt(moving(mike, sarah)= true, 49)))

= 0+0 .07×0−0×0 .07×0 = 0

23

Instantaneous Recognition

sarah begins

walking with

mike
sarah walks away

from mike
sarah is active, mike

continues walking sarah walks with

mike again

2 21 41

M
o

vi
n

g
P

ro
b

ab
ili

ty

1

Moving repeatedly

initiated
0.8

Moving repeatedly

terminated
Moving

initiated

once

Moving persists

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
happensAt(walking(P2), T),
holdsAt(close(P1 ,P2)= true, T),
holdsAt(orientation(P1 ,P2)= true, T).

terminatedAt(moving(P1 ,P2)= true, T)←
happensAt(walking(P1), T),
holdsAt(close(P1 ,P2)= false, T).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

P(holdsAt(moving(mike, sarah)= true, 50))=
P(initiatedAt(moving(mike, sarah)= true, 49)∨

(holdsAt(moving(mike, sarah)= true, 49)∧
¬terminatedAt(moving(mike, sarah)= true, 49)))

= 0+0 .07×0−0×0 .07×0 = 0

23

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

L[i] = In[i]−T

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

L[i] = In[i]−T

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

e∑
i = s

L[i] ≥ 0⇔ P([s, e]) ≥ T

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9

prefix [i] =
i∑

j = 1

L[j]

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp

dp[i] = max
i≤j≤n

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9

dp[10] = max
10≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9

dp[9] = max
9≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9 −0 .9

dp[8] = max
8≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9 −0 .9 −0 .9

dp[7] = max
7≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dp[6] = max
6≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dp[i] = max
i≤j≤10

(prefix [j])

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[s, e] = dp[e]−prefix [s−1] if s > 1

= dp[e] if s = 1

dprange[s, e] ≥ 0 ⇒ ∃e∗ : e∗ ≥ e, P([s, e∗]) ≥ T

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[s, e] = dp[e]−prefix [s−1] if s > 1

= dp[e] if s = 1

dprange[s, e] ≥ 0 ⇒ ∃e∗ : e∗ ≥ e, P([s, e∗]) ≥ T

24

Interval-based Recognition

⇑⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 1] = dp[1] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 1] = dp[1] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 2] = dp[2] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 2] = dp[2] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 3] = dp[3] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 4] = dp[4] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 5] = dp[5] = 0 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 6] = dp[6] =−0 .4 < 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[1 , 6] = dp[6] =−0 .4 < 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[2 , 6] = dp[6]−prefix [1] = 0 .1 ≥ 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[2 , 7] = dp[7]−prefix [1] =−0 .4 < 0

24

Interval-based Recognition

⇑ ⇓
Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[2 , 7] = dp[7]−prefix [1] =−0 .4 < 0

24

Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

24

Interval-based Recognition1

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

1
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2021.

25

Interval-based Recognition1

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

1
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2021.

25

Deletion Probabilities of Support Set
Elements

t1t2t3 tnow

ld3
ld2

µ
ld1

ld2 ld3

d
u
ra
ti
o
n
sP

D
F
(x
)

x

∫ ld3
2µ−ld3

durationsPDF (x) dx = 0 .68
∫ ld2
2µ−ld2

durationsPDF (x) dx = 0 .38

µld1

26

oPIEC: Experimental Results

0 10 20 30 40 50
0.7

0.8

0.9

1

f1
-s
co

re

oPIECbd

oPIECb

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
support set size

(a) rendez-vous
‘smooth noise’

(b) rendez-vous
‘strong noise’

(c) tugging
‘smooth noise’

(d) tugging
‘strong noise’

27

oPIEC: Experimental Results

(a) Total run-times of oPIECbd, oPIECb and PIEC in seconds when processing
data streams of increasing size.

total stream size
(number of time-points)

1K 2K 4K 8K

PIEC 1 .92 ± 0 .32 7 .53 ± 1 .24 29 .76 ± 4 .9 134 .63 ± 22
oPIECb 0.09± 0.02 0.19± 0.05 0.38± 0.1 0.7± 0.2
oPIECbd 0.09± 0.02 0.19± 0.05 0 .39 ± 0 .1 0 .72±0 .23

(b) Total run-times of oPIECbd and oPIECb in seconds as the support set size
increases.

support set size
(number of elements)

50 100 200 400

oPIECb 0.7± 0.21 1.27± 0.5 2.4± 1.1 4.79± 2.41
oPIECbd 0.7± 0.23 1.27± 0.53 2.4± 1.1 4.79± 2.41

28

oPIEC: Experimental Results

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

oPIECbd

SEC

(a)meeting
‘strong noise’

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

(b) fighting
‘smooth noise’

0 50 100 150
0.4

0.5

0.6

support set size

f1
-s
co

re

(c) fighting
‘strong noise’

29

oPIEC: Experimental Results

0 50 100 150
0.7

0.8

0.9

support set size

f1
-s
co

re

meeting

oPIECbd

OSLα

30

Machine Learning for Complex Event
Recognition

INPUT ▶ RECOGNITION ▶ INPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

.

.

happensAt(slowSpeedStart(ID0), t1)
happensAt(turn(ID0 , 11), t2)
happensAt(turn(ID0 , 12), t3)
happensAt(slowSpeedEnd(ID0), t4)
...

Complex Event Stream

.

.

holdsFor(trawling(ID0)= true, [ts0 , te0])
holdsFor(drifting(ID1)= true, [ts1 , te1])
holdsFor(loitering(ID3)= true, [ts2 , te2])
...

initiatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop start(V essel), T),
holdsAt(withinArea(V essel, nearPorts)= true, T).

terminatedAt(stopped(V essel)=nearPorts, T)←
happensAt(stop end(V essel), T).

...

holdsFor(trawling(V essel)= true, I)←
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

From
These

Learn
These

Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming. Theory and Practice of Logic Programming, 2023.

Michelioudakis et al, Online semi-supervised learning of composite event rules by combining
structure and mass-based predicate similarity. Machine Learning, 2024.

31

Neuro-Symbolic Complex Event
Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Differentiable
Inference

Simple Event Stream

.

.

...

Gradients

Complex Event Stream

.

.

Symbolic model

Predictions

Complex
Event labels

Loss

Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey.
Artificial Intelligence, 2024.

32

