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Requirements and Motivation
Requirements:

▶ Temporal specification language:
▶ Formal, declarative formalism.
▶ Wide range of temporal specifications.
▶ Hierarchical and relational patterns.
▶ Background Knowledge.

▶ Highly efficient reasoning algorithms:
▶ Windowing.
▶ Caching.

▶ Noisy event streams.

Logic-based temporal frameworks:
▶ Event Calculus:

▶ Temporal formalism based on logic programming.
▶ Run-Time Event Calculus (RTEC):

▶ Event Calculus + windowing and caching
▶ Probabilistic Interval-based Event Calculus (PIEC):

▶ Event Calculus + noisy events.
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Event Calculus

Predicate Meaning

happensAt(E ,T ) Event E occurs at time T

initiatedAt(F =V ,T ) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time for which
F =V is terminated

holdsAt(F =V ,T ) The value of fluent F is V at time T

holdsFor(F =V , I ) I is the list of the maximal intervals
for which F =V holds continuously

Kowalski et al., A Logic-based Calculus of Events. New Gener. Comput. 4(1): 67–95, 1986.
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Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.
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Simple Fluent: High Speed Near Coast

initiatedAt(highSpeedNC (Vessel)= true,T )←
happensAt(velocity(Vessel ,Speed , CoG , TrueHeading),T ),
holdsAt(withinArea(Vessel , nearCoast)= true,T ),
threshold(vhs ,V ),Speed > V .

terminatedAt(highSpeedNC (Vessel)= true,T )←
happensAt(velocity(Vessel ,Speed),T ),
threshold(vhs ,V ),Speed ≤ V .

terminatedAt(highSpeedNC (Vessel)= true,T )←
happensAt(end(withinArea(Vessel , nearCoast)= true),T ).

Reasoning: holdsFor(highSpeedNC (Vessel)= true, I )

velocity

withinArea

Time

>V >V >V ≤V >V >V ≤V
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Hierarchical Knowledge Bases

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling

lowSpeed

tugging
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Hierarchical Knowledge Bases

drifting

highSpeedNC

withinArea

trawlSpeed

anchoredOrMoored

movingSpeed

tuggingSpeed

changingSpeed

trawlingMovement

loitering

gap

sarSpeed

pilotBoarding

stopped

sarMovement

underWay

rendezVous

sar

trawling
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Semantics

An event description of RTEC is a locally stratified logic program.
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Cyclic Dependencies in Temporal Patterns

▶ Multi-Agent Systems: Voting & NetBill.

status 
=proposed

status 
=voting

status 
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

permission
=false

quote=true

suspended
=true

contract 
=true

power 
=true

obligation 
=true

▶ Biological Feedback Processes.

h
OR

s
OR

e

+2 +1
+1

-2

cI cro

cII n

-2

-1

-2

+1

+1 -2
-1

-3

+2 -3

▶ Maritime Situational Awareness: the stages of a fishing trip,
i.e., started, fishing, returning, ended, form a cycle.
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1. RTECo: Cyclic Dependencies

status 
=proposed

status 
=voting

status 
=voted

status=null

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

status

auxPer
=true

outcome
=carried

power
=true

voted
=aye/nay

voted
=null

permission
=true

obligation
=true

sanctioned
=true

timeqi−ω qi

status = proposed

status = voting

status = voted

status =null

ω

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles
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1. RTECo: Formal Properties

Semantics

An event description of RTECo is a locally stratified logic program.

Correctness

RTECo computes all maximal intervals of the fluents of an event
description with cyclic dependencies, and no other interval.

Complexity

In RTECo, the worst-case time complexity of maximal interval
computation for a fluent definition with cyclic dependencies is
O(ωlog(ω)), where ω is the size of the window.
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1. RTECo: Indicative Experimental Results

NetBill: monitoring active quotes
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∗Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer
set programming. Theory and Practice of Logic Programming, 2022.

†Baumgartner, Combining Event Calculus and Description Logic Reasoning via Logic
Programming. Frontiers of Combining Systems, 2021.

‡Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and
Practice of Logic Programming, 2017.

§Logica: Language of Big Data, https://github.com/EvgSkv/logica.
¶Falcionelli et al., Indexing the Event Calculus: Towards practical human-readable Personal

Health Systems. Artificial Intelligence in Medicine, 2019.
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Events with Delayed Effects

▶ Biological Feedback Processes: the values of the biological
variables in a feedback loop change with time delays.

▶ Maritime Situational Awareness: a fishing activity is
terminated with a delay after multiple changes in heading.

▶ Multi-Agent Systems: agents may be suspended temporarily.
Further violations may extend the period of suspension.

▶ RTEC supports only immediate initiations:

initiatedAt(F =V ,T )←
happensAt(E ,T )[,
conditions].

where conditions:
0−K [not] happensAt(Ek ,T ),
0−M [not] holdsAt(Fm =Vm,T ),
0−Natemporal-constraintn.
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2. RTEC→: Events with Delayed Effects

▶ RTEC→: Representation of future initiations:
▶ fi(quote(M,C ,G )= in effect, quote(M,C ,G )= expiring , 50).

▶ p(quote(M,C ,G )= in effect).

timeqi−ω qi

ω

▶ RTEC→: Reasoning over future initiations:
▶ Compile-time detection of optimal processing order.
▶ Incremental caching in ascending temporal order at run-time.
▶ Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.
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2. RTEC→: Formal Properties

Semantics

An event description of RTEC→ is a locally stratified logic
program.

Correctness

RTEC→ computes all maximal intervals of the fluents of an event
description with events with delayed effects, and no other interval.

Complexity

In RTEC→, the worst-case time complexity of maximal interval
computation for a fluent definition with events with delayed effects
is O(ωlog(ω)), where ω is the size of the window.
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2. RTEC→: Indicative Experimental
Results

Biological Processes:
Immune Response and Phage Infection
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∗Srinivasan et al., Learning explanations for biological feedback with delays using an event
calculus. Machine Learning, 2022.
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The Relations of Allen’s Interval Algebra

Relation Illustration
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equal(i s , i t)
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3. RTECA: Allen Relations

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).

S
T

Time

is1 is2

it1 it2

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International
Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.
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3. RTECA: Formal Properties

Semantics

An event description of RTECA is a locally stratified logic program.

Correctness

RTECA computes all maximal intervals of the fluents of an event
description with Allen relations, and no other interval.

Complexity

In RTECA, the worst-case time complexity of maximal interval
computation for a fluent definition with Allen relations O(ω),
where ω is the size of the window.
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3. RTECA: Indicative Experimental
Results

Monitoring maritime activities with Allen relations

Window size Reasoning Time (ms)
Output
Intervals

Days
Input

Intervals
RTECA D2IA∗ RTECA D2IA∗

1 19K 40 410 6K 6K
2 37K 65 592 9K 9K
4 74K 99 1.1K 16K 16K
8 148K 156 1.6K 32K 31K
16 297K 285 2.7K 77K 76K

∗Awad et al, D2IA: User-defined interval analytics on distributed streams. Information
Systems, 2022.
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4. Stream Reasoning with oPIEC

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

oPIEC

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

Complex Event Stream

. . . . . .

. . . . . .
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holdsAt(close(P1 ,P2 )= false, T ).
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4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog
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Time-points vs Temporal Intervals
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Instantaneous Recognition

Interval-based Recognition

▶ Interval Probability: average
probability of the
time-points it contains.

▶ Probabilistic Maximal
Interval:
▶ interval probability above

a given threshold;
▶ no super-interval with

probability above the
threshold.

▶ Probabilistic maximal
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4. Architecture of oPIEC

Prob-EC =
Event Calculus
+ ProbLog

Application-Specific Rules

initiatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
happensAt(walking(P2 ),T ),
holdsAt(close(P1 ,P2 ) = true,T ),
holdsAt(similarOrientation(P1 ,P2 ) = true,T ).

terminatedAt(moving(P1 ,P2 ) = true,T ) ←
happensAt(walking(P1 ),T ),
holdsAt(close(P1 ,P2 ) = false,T ).

...

Event Calculus Axioms

holdsAt(F = V ,T ) ←
initially(F = V ),
not broken(F = V , 0 ,T ).

holdsAt(F = V ,T ) ←
initiatedAt(F = V ,Ts),Ts < T ,
not broken(F = V ,Ts ,T ).

...

Data Stream

0 .73 :: happensAt(walking(id0 ),T1 )
0 .79 :: happensAt(walking(id1 ),T1 )
0 .92 :: happensAt(active(id5 ),T1 )

...

Point-based CE Stream

0 .57 :: holdsAt(moving(id0 , id1 ),T2 )
0 .73 :: holdsAt(meeting(id1 , id5 ),T2 )
0 .67 :: holdsAt(meeting(id0 , id5 ),T2 )

...

oPIEC =
PIEC +

support set
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oPIEC =
PIEC +

support set

Interval-based CE Stream

0 .61 :: holdsFor(moving(id0 , id1 ), (T2 ,T5 ))
0 .88 :: holdsFor(meeting(id1 , id5 ), (T2 ,T4 ))
0 .66 :: holdsFor(meeting(id0 , id5 ), (T2 ,T9 ))

...
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4. Online Interval-based Recognition with
oPIEC

0

0.2

0.4

0.6

0.8

1

Time

P
ro

b
a
b
il
it
y
o
f
C
o
m
p
le
x
E
v
e
n
t

Instantaneous Recognition

Interval-based Recognition

▶ Windowing.
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4. Online Interval-based Recognition with
oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future
probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval
given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the
window and memory size.
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4. Bounded Online Interval-based
Recognition with oPIEC
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▶ Complex event duration
statistics favor more recent
potential starting points.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International
Journal of Approximate Reasoning, 2023.
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▶ Complex event duration
statistics favor more recent
potential starting points.

▶ Comparable accuracy to
batch reasoning.
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4. oPIEC: Indicative Experimental Results
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Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec

†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec


Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec


Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec


Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec


Summary

▶ Stream Reasoning over Complex Temporal Specifications∗:
▶ RTECo supports cyclic dependencies.
▶ RTEC→ supports events with delayed effects.
▶ RTECA supports Allen relations.

▶ Reasoning over Noisy Data Streams†:
▶ oPIEC: interval-based reasoning over noisy data streams.

▶ Formal Properties.

▶ Open-source stream reasoning frameworks.

▶ Reproducible empirical evaluation on large data streams:
considerable improvement wrt state-of-the-art.

∗https://github.com/aartikis/rtec
†https://github.com/periklismant/opiec

26

https://github.com/aartikis/rtec
https://github.com/periklismant/opiec


Future Work

Possible Directions:

▶ Explanations for derived situations.

▶ Comparison with automata-based complex event recognition
formalisms.

▶ Distributed and parallel stream reasoning.

▶ Stream reasoning in tensor spaces.

▶ Neuro-symbolic stream reasoning.
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Appendix
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Logic Programming
Logic program:

▶ A set of rules a← b1 , . . . , bm, not c1 , . . . , not ck .

Herbrand models of logic program P:

▶ The sets of ground atoms for which all rules in P are true.

Semantics of logic program P:

▶ Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:
▶ There is a partitioning P0 , . . . ,Pn of the ground atoms of P,

such that, for each ground rule, if a ∈ Pi , then
▶ b1 , . . . , bm ∈ Pj , where j ≤ i , and
▶ c1 , . . . , ck ∈ Pj , where j < i .

▶ Semantics of P: the unique perfect model of P.

Our frameworks operate on locally stratified logic programs.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In
Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.
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Run-Time Event Calculus (RTEC)

Predicate Meaning

happensAt(E ,T ) Event E occurs at time T

initiatedAt(F =V ,T ) At time T a period of time for which
F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time for which
F =V is terminated

holdsFor(F =V , I ) I is the list of the maximal intervals
for which F =V holds continuously

holdsAt(F =V ,T ) The value of fluent F is V at time T

union all([J1 , . . . , Jn], I ) I =(J1 ∪ . . . ∪ Jn)

intersect all([J1 , . . . , Jn], I ) I =(J1 ∩ . . . ∩ Jn)

relative complement all I = I ′ \ (J1 ∪ . . . ∪ Jn)
(I ′, [J1 , . . . , Jn], I )

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.
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Run-Time Event Calculus (RTEC):
Fluent Specification

Simple Fluents:

initiatedAt(F =V ,T )←
happensAt(EIn1 ,T )[,
conditions].

...
terminatedAt(F =V ,T )←

happensAt(ET1 ,T )[,
conditions].

...
where conditions:
0−K [not] happensAt(Ek ,T ),
0−M [not] holdsAt(Fm =Vm,T ),
0−Natemporal-constraintn

Statically Determined Fluents:

holdsFor(F =V , I )←
holdsFor(F1 =V1 , I1 )[,
holdsFor(F2 =V2 , I2 ), . . .
holdsFor(Fn =Vn, In),
intervalOperation(L1 , In+1 ), . . .
intervalOperation(Lm, I )].

where intervalOperation:
union all or
intersect all or
relative complement all

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 27(4), 895–908, 2015.
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Fluent-Value Pair Computation

Definition:

initiatedAt(F =V , T )← terminatedAt(F =V , T )←
happensAt(EIn1 , T ), happensAt(ET1 , T ),
[conditions] [conditions]

. . . . . .
initiatedAt(F =V , T )← terminatedAt(F =V , T )←

happensAt(EIni , T ), happensAt(ETj
, T ),

[conditions] [conditions]

Reasoning:

time

0
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Definition:
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RTEC Architecture

Run-time
Memory

Forget
Dynamic
Grounding

Compiled
Rules and

Declarations

Compiler

Offline Online

RTECDomain-Specific Rules

initiatedAt(rich(X)= true, T) ←
happensAt(win lottery(X), T).

terminatedAt(rich(X)= true, T) ←
happensAt(lose wallet(X), T).

initiatedAt(location(X) = Y, T) ←
happensAt(go to(X, Y), T).

holdsFor(happy(X)= true, I)←
holdsFor(rich(X)= true, I1),
holdsFor(location(X)= pub, I2),
union all([I1, I2], I).

Domain-Specific Declarations

grounding(win lottery(X))← person(X).
grounding(lose wallet(X))← person(X).
grounding(go to(X, Y))← person(X),

place(Y).
grounding(rich(X)= true)← person(X).
grounding(location(X)= Y)← person(X),

place(Y).
grounding(happy(X)= true)← person(X).

Data Stream

go to|1|1|chris|home
go to|9|9|chris|work
win lottery|13|13|chris
go to|17|17|chris|pub
lose wallet|19|19|chris

go to|21|21|chris|home
go to|29|29|chris|work

ωi−1

ωi

ωi+1

Output
Entity

Processing

Output Entity Stream

holdsFor(location(chris)= home, [(2, 10)])
holdsFor(location(chris)= work, [(10, inf)])

holdsFor(rich(chris)= true, [(14, 20)])
holdsFor(location(chris)= work, [(11, 18)])
holdsFor(location(chris)= pub, [(18, inf)])
holdsFor(happy(chris)= true, [(14, inf)])

holdsFor(location(chris)= pub, [(21, 22)])
holdsFor(location(chris)= home, [(22, 30)])
holdsFor(location(chris)= work, [(30, inf)])
holdsFor(happy(chris)= true, [(21, 22)])
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RTEC: Windowing
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RTEC: Interval-based Reasoning
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RTEC: Interval-based Reasoning

I1
I2
I3

Iu
Ii
Ic

union all([I1 , I2 , I3 ], Iu )

intersect all([I1 , I2 , I3 ], Ii )

relative complement all(I1 , [I2 , I3 ], Ic)

Time
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Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I )←
holdsFor(stopped(Vessel)= farFromPorts, Isf ),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I ).

Iwa

Isf

Time
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Statically Determined Fluent:
Anchored or Moored

holdsFor(anchoredOrMoored(Vessel)= true, I )←
holdsFor(stopped(Vessel)= farFromPorts, Isf ),
holdsFor(withinArea(Vessel , anchorage)= true, Iwa),
intersect all([Isf , Iwa], Isa),
holdsFor(stopped(Vessel)= nearPorts, Isn),
union all([Isa, Isn], I ).
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Voting: Cyclic Dependencies

initiatedAt(status(M)= proposed ,T ) ←
happensAt(propose(P,M),T ),
holdsAt(status(M)= null ,T ).

initiatedAt(status(M)= voting ,T ) ←
happensAt(second(S ,M),T ),
holdsAt(status(M)= proposed ,T ).

initiatedAt(status(M)= voted ,T ) ←
happensAt(close ballot(C ,M),T ),
holdsAt(status(M)= voting ,T ).

initiatedAt(status(M)= null ,T ) ←
happensAt(declare(C ,M,Res),T ),
holdsAt(status(M)= voted ,T ).
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RTECo: Experimental Results
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RTECo: Experimental Results
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RTECo: Experimental Results
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Semantics of RTECo

happensAt

initiatedAt

terminatedAt

holdsAt

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(0, +)

(0, -)

(1, +)

(1, -)

(1, +)

The cycle-sum graph of an RTECo program.
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RTEC→: Deadlines
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Handling Deadlines: Caching
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RTEC→: Experimental Results
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RTEC→: Experimental Results
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Semantics of RTEC→

initiatedAt terminatedAt

(R-1, -)

...

(2, -)

(1, -)

(R, +)

(1, -)
...

(R-1, -)

The cycle-sum graph of an RTEC→ program.
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RTECA: Allen Relations

holdsFor(suspiciousRendezVous(Vessel1 ,Vessel2 )= true, I )←
holdsFor(gap(Vessel1 )= farFromPorts, Ig1 ),
holdsFor(gap(Vessel2 )= farFromPorts, Ig2 ),
holdsFor(proximity(Vessel1 ,Vessel2 )= true, T ),
union all([Ig1 , Ig2 ],S),
allen(during,S, T , target, I ).

Ig1

Ig2

S
T

Isrv

Time

ig11

ig21

is1 is2

it1 it2

isrv1
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).

q81

S
T

Query time: q81
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holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).
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S
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Query time: q82
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).
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w82

Query time: q82

is,q822
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).

q81 q82
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w82
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RTECA: Windowing

holdsFor(disappearedInArea(Vessel ,AreaType)= true, I )←
holdsFor(withinArea(Vessel ,AreaType)= true,S),
holdsFor(gap(Vessel)= farFromPorts, T ),
allen(meets,S, T , target, I ).

q81 q82

S
T

I

w82

Query time: q82

is,q822

it,q822

iq82
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RTECA: Experimental Evaluation

Batch setting.

Batch size Reasoning Time

Input
Intervals

RTECA AEGLE D2IA

200 1 980 2K
2K 14 4K 6K
20K 154 71.5K 395K
200K 1.8K MEM >3.6M

Streaming setting.

Window size Reasoning Time
Output

Interval Pairs

Days
Input

Intervals
RTECA D2IA RTECA D2IA

1 125 1 48 5K 5K
2 250 2 164 19K 18K
4 500 4 568 72K 71K
8 1K 8 1.7K 237K 236K
16 2K 15 7.8K 878K 874K
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Instantaneous Recognition

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).
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Instantaneous Recognition

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(initiatedAt(moving(mike, sarah)= true, 1))=
P(happensAt(walking(mike), 1))×
P(happensAt(walking(sarah), 1))×
P(holdsAt(close(mike, sarah)= true, 1))×
P(holdsAt(orientation(mike, sarah)= true, 1))
= 0 .7 × 0 .46 × 1 × 1 = 0 .322
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Instantaneous Recognition

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(CE =true, t))=
P(initiatedAt(CE =true, t−1)∨

(holdsAt(CE =true, t−1)∧
¬ terminatedAt(CE =true, t−1)))

23



Instantaneous Recognition

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(moving(mike, sarah)= true, 2))=
P(initiatedAt(moving(mike, sarah)= true, 1)∨

(holdsAt(moving(mike, sarah)= true, 1)∧
¬terminatedAt(moving(mike, sarah)= true, 1)))

= 0 .322+0×1−0 .322×0×1 = 0 .322

23
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2

sarah begins 

walking with 

mike
sarah walks away 

from mike
sarah is active,  mike 

continues walking sarah walks with 

mike again

21 41

M
o

vi
n

g 
P

ro
b

ab
ili

ty

Moving repeatedly 

initiated
0.8

Moving repeatedly 

terminated
Moving    

initiated          

once

Moving persists 

through inertia

Video Frames

0.32

21

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .70 :: happensAt(walking(mike), 1).
0 .46 :: happensAt(walking(sarah), 1).

P(holdsAt(moving(mike, sarah)= true, 2))=
P(initiatedAt(moving(mike, sarah)= true, 1)∨

(holdsAt(moving(mike, sarah)= true, 1)∧
¬terminatedAt(moving(mike, sarah)= true, 1)))

= 0 .322+0×1−0 .322×0×1 = 0 .322

23
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21

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .73 :: happensAt(walking(mike), 2).
0 .55 :: happensAt(active(sarah), 2). · · ·
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Instantaneous Recognition
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21

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .73 :: happensAt(walking(mike), 2).
0 .55 :: happensAt(active(sarah), 2). · · ·

P(holdsAt(moving(mike, sarah)= true, 3))=
P(initiatedAt(moving(mike, sarah)= true, 2)∨

(holdsAt(moving(mike, sarah)= true, 2)∧
¬terminatedAt(moving(mike, sarah)= true, 2)))

= 0+0 .322×1−0×0 .322×1 = 0 .322
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21

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).
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Instantaneous Recognition
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21

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).

P(holdsAt(moving(mike, sarah)= true, 21))=
P(initiatedAt(moving(mike, sarah)= true, 20)∨

(holdsAt(moving(mike, sarah)= true, 20)∧
¬terminatedAt(moving(mike, sarah)= true, 20)))

= 0+0 .322×1−0×0 .322×1 = 0 .322
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .45 :: happensAt(walking(mike), 20).
0 .14 :: happensAt(active(sarah), 20).

P(holdsAt(moving(mike, sarah)= true, 21))=
P(initiatedAt(moving(mike, sarah)= true, 20)∨

(holdsAt(moving(mike, sarah)= true, 20)∧
¬terminatedAt(moving(mike, sarah)= true, 20)))

= 0+0 .322×1−0×0 .322×1 = 0 .322
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Instantaneous Recognition
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mike again
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·
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Instantaneous Recognition
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·

P(initiatedAt(moving(mike, sarah)= true, 21))=
P(happensAt(walking(mike), 21))×
P(happensAt(walking(sarah), 21))×
P(holdsAt(close(mike, sarah)= true, 21))×
P(holdsAt(orientation(mike, sarah)= true, 21))
= 0 .39×0 .28×1×1 = 0 .11
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .39 :: happensAt(walking(mike), 21).
0 .28 :: happensAt(walking(sarah), 21). · · ·

P(holdsAt(moving(mike, sarah)= true, 22))=
P(initiatedAt(moving(mike, sarah)= true, 21)∨

(holdsAt(moving(mike, sarah)= true, 21)∧
¬terminatedAt(moving(mike, sarah)= true, 21)))

= 0 .11+0 .322×1−0 .11×0 .322×1 = 0 .39
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).
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Instantaneous Recognition
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(initiatedAt(moving(mike, sarah)= true, 40))=
P(happensAt(walking(mike), 40))×
P(happensAt(walking(sarah), 40))×
P(holdsAt(close(mike, sarah)= true, 40))×
P(holdsAt(orientation(mike, sarah)= true, 40))
= 0 .28×0 .18×1×1 = 0 .05
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(holdsAt(moving(mike, sarah)= true, 41))=
P(initiatedAt(moving(mike, sarah)= true, 40)∨

(holdsAt(moving(mike, sarah)= true, 40)∧
¬terminatedAt(moving(mike, sarah)= true, 40)))

= 0 .05+0 .79×1−0 .05×0 .79×1 = 0 .80
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .28 :: happensAt(walking(mike), 40).
0 .18 :: happensAt(walking(sarah), 40).

P(holdsAt(moving(mike, sarah)= true, 41))=
P(initiatedAt(moving(mike, sarah)= true, 40)∨

(holdsAt(moving(mike, sarah)= true, 40)∧
¬terminatedAt(moving(mike, sarah)= true, 40)))

= 0 .05+0 .79×1−0 .05×0 .79×1 = 0 .80
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·

P(terminatedAt(moving(mike, sarah)= true, 41))=
P(happensAt(walking(mike), 41))×
P(holdsAt(close(mike, sarah)= false, 41))
= 0 .18×1 = 0 .18
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initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

0 .18 :: happensAt(walking(mike), 41).
0 .79 :: happensAt(inactive(sarah), 41). · · ·

P(holdsAt(moving(mike, sarah)= true, 42))=
P(initiatedAt(moving(mike, sarah)= true, 41)∨

(holdsAt(moving(mike, sarah)= true, 41)∧
¬terminatedAt(moving(mike, sarah)= true, 41)))

= 0+0 .8×(1 − 0 .18)−0×0 .8×(1 − 0 .18)= 0 .66
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initiated
0.8

Moving repeatedly 

terminated
Moving    

initiated          

once

Moving persists 

through inertia

Video Frames

0.32

initiatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
happensAt(walking(P2 ), T ),
holdsAt(close(P1 ,P2 )= true, T ),
holdsAt(orientation(P1 ,P2 )= true, T ).

terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).
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terminatedAt(moving(P1 ,P2 )= true, T )←
happensAt(walking(P1 ), T ),
holdsAt(close(P1 ,P2 )= false, T ).

1 .00 :: happensAt(walking(mike), 49).
0 .96 :: happensAt(inactive(sarah), 49).

P(terminatedAt(moving(mike, sarah)= true, 49))=
P(happensAt(walking(mike), 49))×
P(holdsAt(close(mike, sarah)= false, 49))
= 1×1 = 1
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(holdsAt(moving(mike, sarah)= true, 49)∧
¬terminatedAt(moving(mike, sarah)= true, 49)))

= 0+0 .07×0−0×0 .07×0 = 0
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Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1

L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

L[i ] = In[i ]−T
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Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5

e∑
i = s

L[i ] ≥ 0⇔ P([s, e]) ≥ T
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In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9

prefix [i ] =
i∑

j = 1

L[j ]
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dp

dp[i ] = max
i≤j≤n

(prefix [j ])

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9

dp[10 ] = max
10≤j≤10

(prefix [j ])

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9

dp[9 ] = max
9≤j≤10

(prefix [j ])

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9 −0 .9

dp[8 ] = max
8≤j≤10

(prefix [j ])

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .9 −0 .9 −0 .9 −0 .9

dp[7 ] = max
7≤j≤10

(prefix [j ])

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dp[6 ] = max
6≤j≤10

(prefix [j ])
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dprange[s, e] = dp[e]−prefix [s−1 ] if s > 1

= dp[e] if s = 1

dprange[s, e] ≥ 0 ⇒ ∃e∗ : e∗ ≥ e, P([s, e∗]) ≥ T

24



Interval-based Recognition

Time 1 2 3 4 5 6 7 8 9 10
In 0 0 .5 0 .7 0 .9 0 .4 0 .1 0 0 0 .5 1
L −0 .5 0 0 .2 0 .4 −0 .1 −0 .4 −0 .5 −0 .5 0 0 .5
prefix −0 .5 −0 .5 −0 .3 0 .1 0 −0 .4 −0 .9 −1 .4 −1 .4 −0 .9
dp 0 .1 0 .1 0 .1 0 .1 0 −0 .4 −0 .9 −0 .9 −0 .9 −0 .9

dprange[s, e] = dp[e]−prefix [s−1 ] if s > 1

= dp[e] if s = 1

dprange[s, e] ≥ 0 ⇒ ∃e∗ : e∗ ≥ e, P([s, e∗]) ≥ T

24



Interval-based Recognition

⇑⇓
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Interval-based Recognition1

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the
dataset size.

1
Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics

and Artificial Intelligence, 2021.
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Deletion Probabilities of Support Set
Elements
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oPIEC: Experimental Results
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oPIEC: Experimental Results

(a) Total run-times of oPIECbd, oPIECb and PIEC in seconds when processing
data streams of increasing size.

total stream size
(number of time-points)

1K 2K 4K 8K

PIEC 1 .92 ± 0 .32 7 .53 ± 1 .24 29 .76 ± 4 .9 134 .63 ± 22
oPIECb 0.09± 0.02 0.19± 0.05 0.38± 0.1 0.7± 0.2
oPIECbd 0.09± 0.02 0.19± 0.05 0 .39 ± 0 .1 0 .72±0 .23

(b) Total run-times of oPIECbd and oPIECb in seconds as the support set size
increases.

support set size
(number of elements)

50 100 200 400

oPIECb 0.7± 0.21 1.27± 0.5 2.4± 1.1 4.79± 2.41
oPIECbd 0.7± 0.23 1.27± 0.53 2.4± 1.1 4.79± 2.41
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oPIEC: Experimental Results
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oPIEC: Experimental Results
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Machine Learning for Complex Event
Recognition

INPUT ▶ RECOGNITION ▶ INPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Simple Event Stream

. . .. . .

. . .. . .

happensAt(slowSpeedStart(ID0 ), t1 )
happensAt(turn(ID0 , 11 ), t2 )
happensAt(turn(ID0 , 12 ), t3 )
happensAt(slowSpeedEnd(ID0 ), t4 )
...

Complex Event Stream

. . . . . .

. . . . . .

holdsFor(trawling(ID0 )= true, [ts0 , te0 ])
holdsFor(drifting(ID1 )= true, [ts1 , te1 ])
holdsFor(loitering(ID3 )= true, [ts2 , te2 ])
...

initiatedAt(stopped(V essel)=nearPorts, T )←
happensAt(stop start(V essel), T ),
holdsAt(withinArea(V essel, nearPorts)= true, T ).

terminatedAt(stopped(V essel)=nearPorts, T )←
happensAt(stop end(V essel), T ).

...

holdsFor(trawling(V essel)= true, I)←
holdsFor(trawlingMovement(V essel)= true, Itc),
holdsFor(trawlingSpeed(V essel)= true, It),
intersect all([Itc, It], Ii),
threshold(vtrawl, Vtrawl),
intDurGreater(Ii, Vtrawl, I).

...

From
These

Learn
These

Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming. Theory and Practice of Logic Programming, 2023.

Michelioudakis et al, Online semi-supervised learning of composite event rules by combining
structure and mass-based predicate similarity. Machine Learning, 2024.
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Neuro-Symbolic Complex Event
Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Complex
Event

Recognition
System

Complex Event
Definitions

Differentiable
Inference

Simple Event Stream

. . .. . .

. . .. . .

...

Gradients

Complex Event Stream

. . . . . .

. . . . . .

Symbolic model

Predictions

Complex
Event labels

Loss

Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey.
Artificial Intelligence, 2024.
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