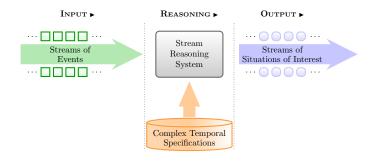
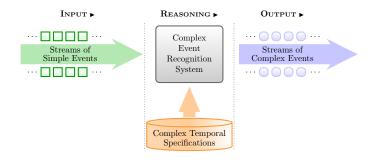
Reasoning over Complex Temporal Specifications and Noisy Data Streams


Periklis Mantenoglou

National and Kapodistrian University of Athens, Greece NCSR Demokritos, Greece



Stream Reasoning

Complex Event Recognition

Requirements:

Temporal specification language:

- Temporal specification language:
 - Formal, declarative formalism.

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.

Highly efficient reasoning algorithms:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - ► Windowing.

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - ► Windowing.
 - Caching.

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - ► Windowing.
 - Caching.
- Noisy event streams.

Logic-based temporal frameworks:

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - ► Windowing.
 - Caching.
- Noisy event streams.

Logic-based temporal frameworks:

- Temporal specification language:
 - Formal, declarative formalism.
 - Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.
- Logic-based temporal frameworks:
 - Event Calculus:
 - Temporal formalism based on logic programming.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.

Logic-based temporal frameworks:

- Event Calculus:
 - Temporal formalism based on logic programming.
- Run-Time Event Calculus (RTEC):

Event Calculus + windowing and caching

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - ► Caching.
- Noisy event streams.

Logic-based temporal frameworks:

- Event Calculus:
 - Temporal formalism based on logic programming.
- Run-Time Event Calculus (RTEC):

Event Calculus + windowing and caching

- Probabilistic Interval-based Event Calculus (PIEC):
 - Event Calculus + noisy events.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- ► Noisy event streams.

Motivation: No framework fulfills all requirements.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.

Motivation: No framework fulfills all requirements. Contributions:

► RTEC_o: RTEC + cyclic dependencies.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- ► Noisy event streams.

Motivation: No framework fulfills all requirements. Contributions:

- ► RTEC_o: RTEC + cyclic dependencies.
- ▶ RTEC \rightarrow : RTEC + events with delayed effects.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.

Motivation: No framework fulfills all requirements. Contributions:

- ► RTEC_o: RTEC + cyclic dependencies.
- ▶ RTEC \rightarrow : RTEC + events with delayed effects.
- ► RTEC_A: RTEC + Allen relations.

Requirements:

- Temporal specification language:
 - Formal, declarative formalism.
 - ► Wide range of temporal specifications.
 - Hierarchical and relational patterns.
 - Background Knowledge.
- Highly efficient reasoning algorithms:
 - Windowing.
 - Caching.
- Noisy event streams.

Motivation: No framework fulfills all requirements. Contributions:

- ► RTEC_o: RTEC + cyclic dependencies.
- ▶ RTEC \rightarrow : RTEC + events with delayed effects.
- ► RTEC_A: RTEC + Allen relations.
- ▶ oPIEC: PIEC + data streams.

Publications

Journal Publications:

Mantenoglou P., Pitsikalis M., Artikis A., Reasoning over Streams of Events with Delayed Effects.

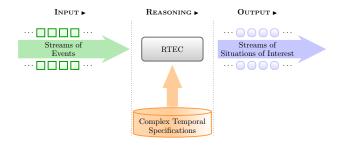
In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

Mantenoglou P., Artikis A., Paliouras G., Online Event Recognition over Noisy Data Streams.

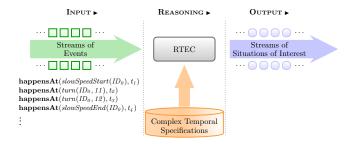
In International Journal of Approximate Reasoning (IJAR), 161, 2023. DOI: https://doi.org/10.1016/j.ijar.2023.108993

Conference Publications:

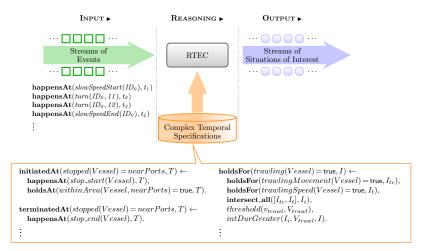
- Mantenoglou P., Kelesis D., Artikis A., Complex Event Recognition with Allen Relations. In Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 502–511, 2023. DOI: https://doi.org/10.24963/kr.2023/49
- Mantenoglou P., Pitsikalis M., Artikis A., Stream Reasoning with Cycles. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 533–553, 2022. DOI: https://doi.org/10.24963/kr.2022/56
- Mantenoglou P., Artikis A., Paliouras G., Online Probabilistic Interval-based Event Calculus. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI), pp. 2624–2631, 2020. DOI: https://doi.org/10.3233/FAIA200399

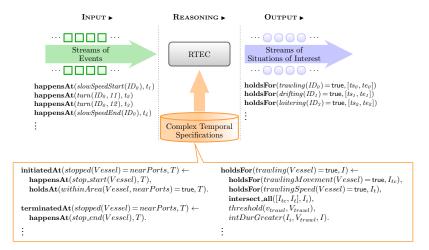

Peripheral Publication:

 Andrienko N., Andrienko G., Artikis A., Mantenoglou P., Rinzivillo S., Human-in-the-Loop: Visual Analytics for Building Models Recognising Behavioural Patterns in Time Series. In IEEE Computer Graphics and Applications (CG&A), pp. 1–15, 2024. DOI: https://doi.org/10.1109/MCG.2024.3379851


Event Calculus

Predicate	Meaning
happensAt (E, T)	Event E occurs at time T
initiatedAt $(F = V, T)$	At time T a period of time for which $F = V$ is initiated
terminatedAt($F = V, T$)	At time T a period of time for which $F = V$ is terminated
holdsAt(F = V, T)	The value of fluent F is V at time T
holdsFor(F = V, I)	I is the list of the maximal intervals for which $F = V$ holds continuously


Kowalski et al., A Logic-based Calculus of Events. New Gener. Comput. 4(1): 67-95, 1986.


Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

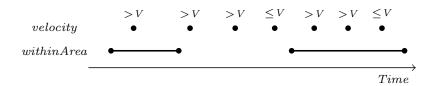
Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

initiatedAt(highSpeedNC(Vessel) = true, T) \leftarrow happensAt(velocity(Vessel, Speed, _CoG, _TrueHeading), T), holdsAt(withinArea(Vessel, nearCoast) = true, T), threshold(v_{hs}, V), Speed > V.

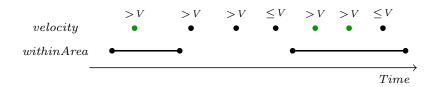
 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$


 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel}, \textit{Speed}), T), \\ \textit{threshold}(\textit{v}_{hs}, V), \textit{Speed} \leq V. \end{aligned}$

terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

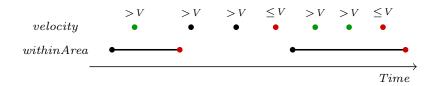
 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$

 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, \textit{T}) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed}), \textit{T}), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}), \textit{Speed} \leq \textit{V}. \end{aligned}$


terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

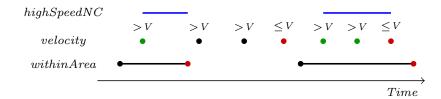
 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$

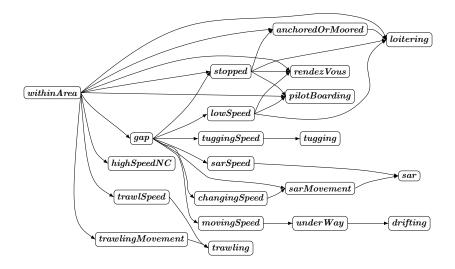
 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, \textit{T}) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed}), \textit{T}), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}), \textit{Speed} \leq \textit{V}. \end{aligned}$


terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

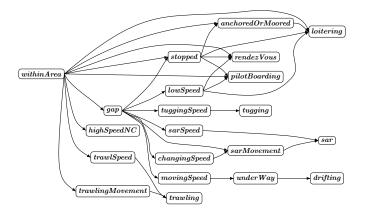
 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$

 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, \textit{T}) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed}), \textit{T}), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}), \textit{Speed} \leq \textit{V}. \end{aligned}$


terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

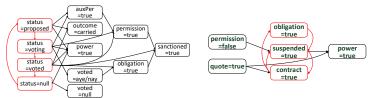

 $\begin{array}{l} \textbf{initiatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, T) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed},_\textit{CoG},_\textit{TrueHeading}), T), \\ \textbf{holdsAt}(\textit{withinArea}(\textit{Vessel},\textit{nearCoast}) = \textsf{true}, T), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}),\textit{Speed} > \textit{V}. \end{array}$

 $\begin{aligned} \textbf{terminatedAt}(\textit{highSpeedNC}(\textit{Vessel}) = \textsf{true}, \textit{T}) \leftarrow \\ \textbf{happensAt}(\textit{velocity}(\textit{Vessel},\textit{Speed}), \textit{T}), \\ \textit{threshold}(\textit{v}_{hs}, \textit{V}), \textit{Speed} \leq \textit{V}. \end{aligned}$


terminatedAt(*highSpeedNC*(*Vessel*) = true, T) \leftarrow happensAt(*end*(*withinArea*(*Vessel*, *nearCoast*) = true), T).

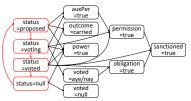
Hierarchical Knowledge Bases

Hierarchical Knowledge Bases

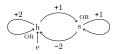


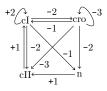
Semantics

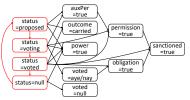
An event description of RTEC is a locally stratified logic program.

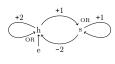

Cyclic Dependencies in Temporal Patterns

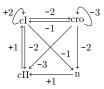
Multi-Agent Systems: Voting & NetBill.

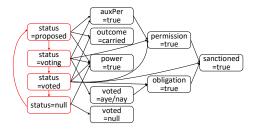

Cyclic Dependencies in Temporal Patterns


Multi-Agent Systems: Voting & NetBill.

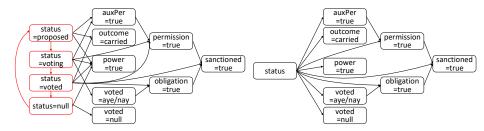

Biological Feedback Processes.

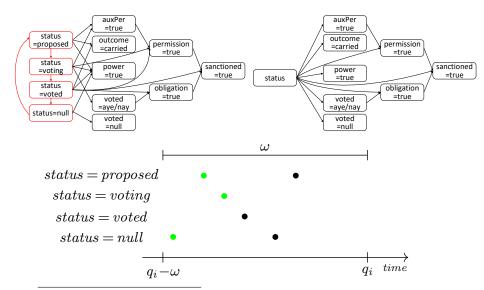

Cyclic Dependencies in Temporal Patterns

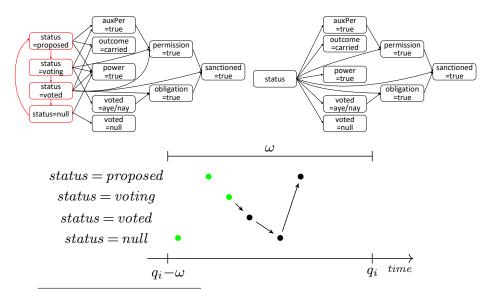

Multi-Agent Systems: Voting & NetBill.

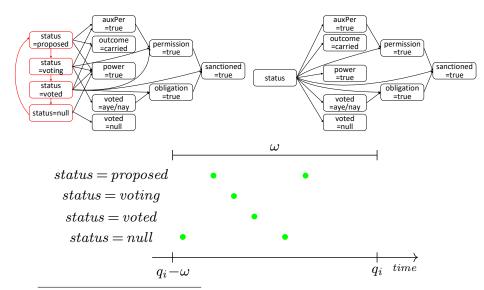


Biological Feedback Processes.




Maritime Situational Awareness: the stages of a fishing trip, i.e., started, fishing, returning, ended, form a cycle.


Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544–553, 2022.


Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544–553, 2022.

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544–553, 2022.

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544–553, 2022.

Mantenoglou et al., Stream Reasoning with Cycles. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 544–553, 2022.

1. RTEC_o: Formal Properties

Semantics

An event description of RTEC_o is a locally stratified logic program.

1. RTEC_o: Formal Properties

Semantics

An event description of RTEC_o is a locally stratified logic program.

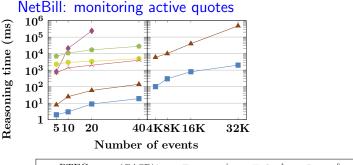
Correctness

RTEC_o computes all maximal intervals of the fluents of an event description with cyclic dependencies, and no other interval.

1. RTEC_o: Formal Properties

Semantics

An event description of RTEC_o is a locally stratified logic program.


Correctness

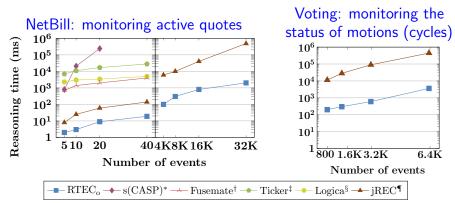
 $RTEC_o$ computes all maximal intervals of the fluents of an event description with cyclic dependencies, and no other interval.

Complexity

In RTEC_o, the worst-case time complexity of maximal interval computation for a fluent definition with cyclic dependencies is $\mathcal{O}(\omega \log(\omega))$, where ω is the size of the window.

1. RTECo: Indicative Experimental Results

* Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer set programming. Theory and Practice of Logic Programming, 2022.


[†]Baumgartner, Combining Event Calculus and Description Logic Reasoning via Logic Programming. Frontiers of Combining Systems, 2021.

[‡]Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and Practice of Logic Programming, 2017.

[§]Logica: Language of Big Data, https://github.com/EvgSkv/logica.

[¶]Falcionelli et al., Indexing the Event Calculus: Towards practical human-readable Personal Health Systems. Artificial Intelligence in Medicine, 2019.

1. RTECo: Indicative Experimental Results

*Arias et al., Modeling and reasoning in event calculus using goal-directed constraint answer set programming. Theory and Practice of Logic Programming, 2022.

[†]Baumgartner, Combining Event Calculus and Description Logic Reasoning via Logic Programming. Frontiers of Combining Systems, 2021.

[‡]Beck et al., Ticker: A system for incremental asp-based stream reasoning. Theory and Practice of Logic Programming, 2017.

[§]Logica: Language of Big Data, https://github.com/EvgSkv/logica.

[¶]Falcionelli et al., Indexing the Event Calculus: Towards practical human-readable Personal Health Systems. Artificial Intelligence in Medicine, 2019.

Biological Feedback Processes: the values of the biological variables in a feedback loop change with time delays.

- Biological Feedback Processes: the values of the biological variables in a feedback loop change with time delays.
- Maritime Situational Awareness: a fishing activity is terminated with a delay after multiple changes in heading.

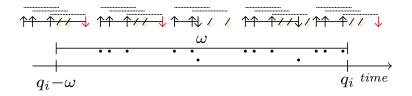
- Biological Feedback Processes: the values of the biological variables in a feedback loop change with time delays.
- Maritime Situational Awareness: a fishing activity is terminated with a delay after multiple changes in heading.
- Multi-Agent Systems: agents may be suspended temporarily. Further violations may extend the period of suspension.

- Biological Feedback Processes: the values of the biological variables in a feedback loop change with time delays.
- Maritime Situational Awareness: a fishing activity is terminated with a delay after multiple changes in heading.
- Multi-Agent Systems: agents may be suspended temporarily. Further violations may extend the period of suspension.
- RTEC supports only immediate initiations:

initiatedAt(F = V, T) \leftarrow happensAt(E, T)[, conditions]. where conditions: ${}^{0-K}[not]$ happensAt (E_k, T) , ${}^{0-M}[not]$ holdsAt $(F_m = V_m, T)$, ${}^{0-N}$ atemporal-constraint_n.

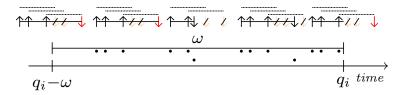
► RTEC[→]: Representation of future initiations:

▶ $fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).$


Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

► RTEC[→]: Representation of future initiations:

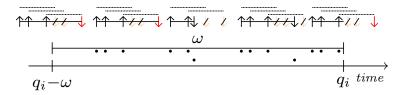
- ▶ $fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).$
- \blacktriangleright **p**(quote(M, C, G) = in_effect).


Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

RTEC→: Representation of future initiations:
 fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).
 p(quote(M, C, G) = in_effect).

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

RTEC→: Representation of future initiations:
 fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).
 p(quote(M, C, G) = in_effect).

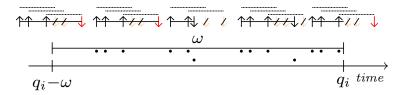


► RTEC[→]: Reasoning over future initiations:

Compile-time detection of optimal processing order.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

RTEC→: Representation of future initiations:
 fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).
 p(quote(M, C, G) = in_effect).



► RTEC[→]: Reasoning over future initiations:

- Compile-time detection of optimal processing order.
- Incremental caching in ascending temporal order at run-time.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

▶ RTEC→: Representation of future initiations:
 ▶ fi(quote(M, C, G) = in_effect, quote(M, C, G) = expiring, 50).
 ▶ p(quote(M, C, G) = in_effect).

▶ RTEC[→]: Reasoning over future initiations:

- Compile-time detection of optimal processing order.
- Incremental caching in ascending temporal order at run-time.
- Minimal information transfer between windows.

Mantenoglou et al., Reasoning over streams of events with delayed effects. In IEEE Transactions on Knowledge and Data Engineering (TKDE), under review since January 2024.

2. RTEC \rightarrow : Formal Properties

Semantics

An event description of $\mathsf{RTEC}^{\rightarrow}$ is a locally stratified logic program.

2. RTEC \rightarrow : Formal Properties

Semantics

An event description of $RTEC^{\rightarrow}$ is a locally stratified logic program.

Correctness

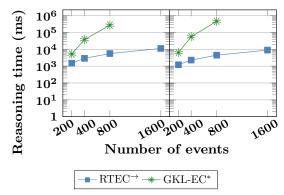
 $RTEC^{\rightarrow}$ computes all maximal intervals of the fluents of an event description with events with delayed effects, and no other interval.

2. RTEC \rightarrow : Formal Properties

Semantics

An event description of RTEC \rightarrow is a locally stratified logic program.

Correctness


 $RTEC^{\rightarrow}$ computes all maximal intervals of the fluents of an event description with events with delayed effects, and no other interval.

Complexity

In RTEC^{\rightarrow}, the worst-case time complexity of maximal interval computation for a fluent definition with events with delayed effects is $\mathcal{O}(\omega log(\omega))$, where ω is the size of the window.

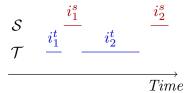
2. RTEC \rightarrow : Indicative Experimental Results

Biological Processes: Immune Response and Phage Infection (delayed effects & cycles)

^{*}Srinivasan et al., Learning explanations for biological feedback with delays using an event calculus. Machine Learning, 2022.

The Relations of Allen's Interval Algebra

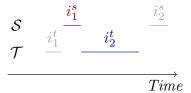
Relation	Illustration
$before(i^s, i^t)$	
$meets(i^s, i^t)$	<u> </u>
$starts(i^s, i^t)$	
$finishes(i^s, i^t)$	$\frac{\frac{i^{s}}{i^{s}}}{i^{t}}$
$during(i^s, i^t)$	i ^s
overlaps(i^s, i^t)	
$equal(i^s, i^t)$	$\frac{i^{s}}{i^{t}}$


3. RTEC_A: Allen Relations

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, \mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts}, \mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets}, \mathcal{S}, \mathcal{T}, \mathsf{target}, I). \end{aligned}$

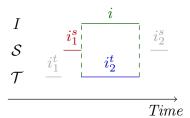
Mantenoglou et al., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

3. RTECA: Allen Relations


 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, \mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts}, \mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets}, \mathcal{S}, \mathcal{T}, \mathsf{target}, I). \end{aligned}$

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

3. RTECA: Allen Relations


holdsFor(*disappearedInArea*(*Vessel*, *AreaType*) = true, *I*) \leftarrow **holdsFor**(*withinArea*(*Vessel*, *AreaType*) = true, S), **holdsFor**(*gap*(*Vessel*) = *farFromPorts*, T), **allen**(meets, S, T, target, *I*).

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

3. RTECA: Allen Relations

holdsFor(*disappearedInArea*(*Vessel*, *AreaType*) = true, *I*) \leftarrow **holdsFor**(*withinArea*(*Vessel*, *AreaType*) = true, S), **holdsFor**(*gap*(*Vessel*) = *farFromPorts*, T), **allen**(meets, S, T, target, *I*).

Mantenoglou et al., Complex Event Recognition with Allen Relations. In International Conference on Principles of Knowledge Representation and Reasoning (KR), 502–511, 2023.

3. RTEC_A: Formal Properties

Semantics

An event description of $RTEC_A$ is a locally stratified logic program.

3. RTEC_A: Formal Properties

Semantics

An event description of RTEC_A is a locally stratified logic program.

Correctness

 $RTEC_A$ computes all maximal intervals of the fluents of an event description with Allen relations, and no other interval.

3. RTEC_A: Formal Properties

Semantics

An event description of RTEC_A is a locally stratified logic program.

Correctness

 $RTEC_A$ computes all maximal intervals of the fluents of an event description with Allen relations, and no other interval.

Complexity

In RTEC_A, the worst-case time complexity of maximal interval computation for a fluent definition with Allen relations $\mathcal{O}(\omega)$, where ω is the size of the window.

3. RTEC_A: Indicative Experimental Results

Monitoring maritime activities with Allen relations

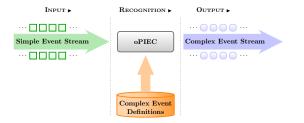
Window size		Reasoning Time (ms)		Output Intervals	
Days	Input Intervals	RTEC _A	D ² IA*	RTEC _A	D ² IA*
1	19K	40	410	6K	6K
2	37K	65	592	9K	9K
4	74K	99	1.1K	16K	16K
8	148K	156	1.6K	32K	31K
16	297K	285	2.7K	77K	76K

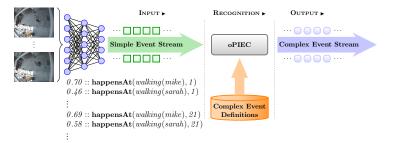
^{*} Awad et al, D²IA: User-defined interval analytics on distributed streams. Information Systems, 2022.

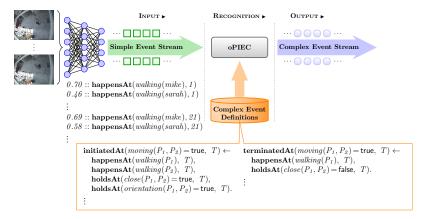
3. RTEC_A: Indicative Experimental Results

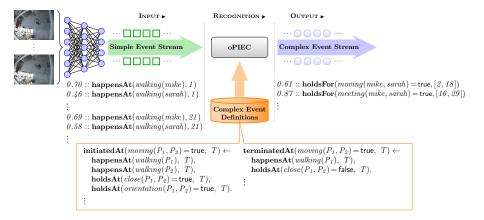
Monitoring maritime activities with Allen relations

Window size		Reasoning Time (ms)		Output Intervals	
Days	Input Intervals	RTEC _A	D ² IA*	RTEC _A	D ² IA*
1	19K	40	410	6K	6K
2	37K	65	592	9K	9K
4	74K	99	1.1K	16K	16K
8	148K	156	1.6K	32K	31K
16	297K	285	2.7K	77K	76K

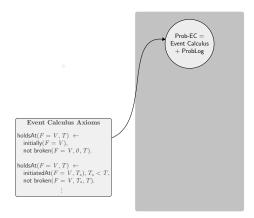

 $^{^{*}}$ Awad et al, D²IA: User-defined interval analytics on distributed streams. Information Systems, 2022.

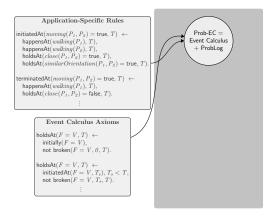

3. RTEC_A: Indicative Experimental Results

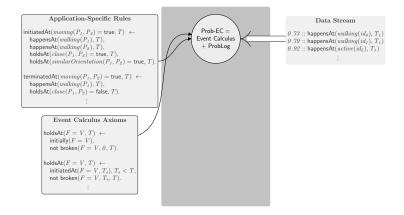

Monitoring maritime activities with Allen relations

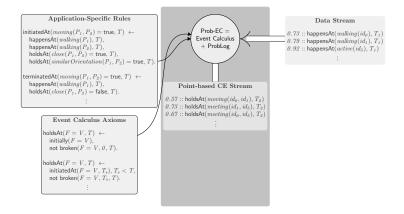

Window size		Reasoning Time (ms)		Output Intervals	
Days	Input Intervals	RTEC _A	D ² IA*	RTEC _A	D^2IA^*
1	19K	40	410	6K	6K
2	37K	65	592	9K	9K
4	74K	99	1.1K	16K	16K
8	148K	156	1.6K	32K	31K
16	297K	285	2.7K	77K	76K

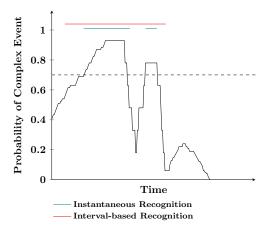
 $^{^{*}}$ Awad et al, D²IA: User-defined interval analytics on distributed streams. Information Systems, 2022.

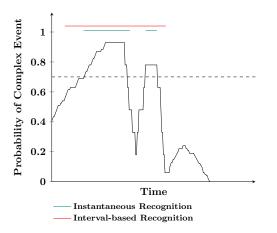


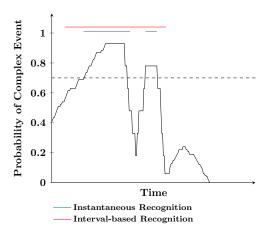




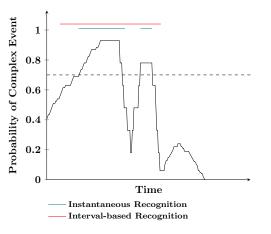




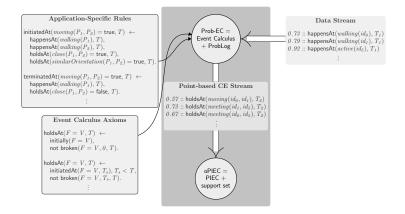


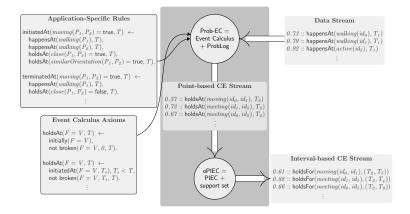


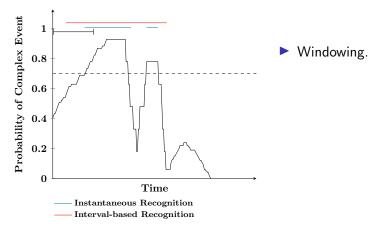
Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

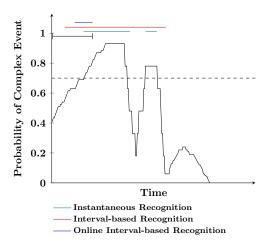

 Interval Probability: average probability of the time-points it contains.

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

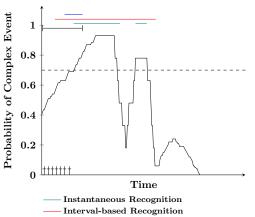

- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.

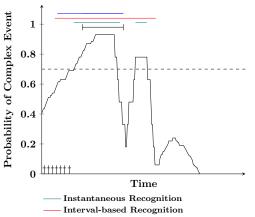

Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.




- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.
- Probabilistic maximal interval computation via maximal non-negative sum interval computation.

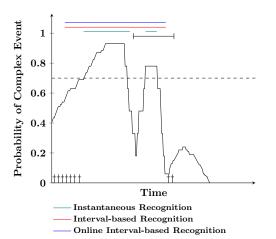
Artikis et al., A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

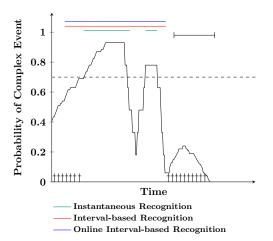



- Windowing.
- Probabilistic maximal interval computation.

— Online Interval-based Recognition

Windowing.


- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.


[—] Online Interval-based Recognition

Windowing.

- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

4. Online Interval-based Recognition with oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

4. Online Interval-based Recognition with oPIEC: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

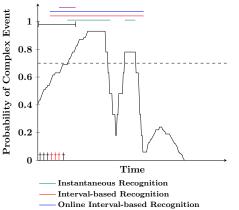
An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

4. Online Interval-based Recognition with oPIEC: Properties

Memory Minimality

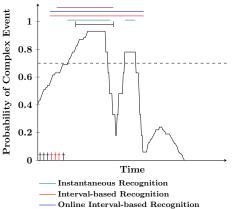
A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness


An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Complexity

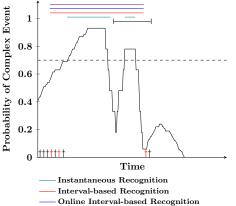
The computation of probabistic maximal intervals is linear to the window and memory size.


 Complex event duration statistics favor more recent

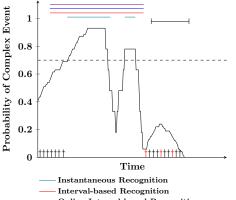
potential starting points.

— Bounded Online Interval-based Recognition

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023.


 Complex event duration statistics favor more recent potential starting points.

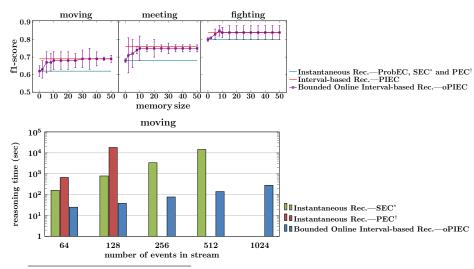
⁻⁻⁻⁻⁻ Bounded Online Interval-based Recognition


Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023.

 Complex event duration statistics favor more recent

potential starting points.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023.



- Online Interval-based Recognition
- Bounded Online Interval-based Recognition

- Complex event duration statistics favor more recent potential starting points.
- Comparable accuracy to batch reasoning.

Mantenoglou et al., Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023.

4. oPIEC: Indicative Experimental Results

*McAreavey et al., The event calculus in probabilistic logic programming with annotated disjunctions. AAMAS, 2017.

[†]D'Asaro et al., Probabilistic reasoning about epistemic action narratives. Artificial Intelligence, 2021.

Stream Reasoning over Complex Temporal Specifications*:

- ► RTEC_o supports cyclic dependencies.
- RTEC \rightarrow supports events with delayed effects.
- ► RTEC_A supports Allen relations.

^{*}https://github.com/aartikis/rtec

Stream Reasoning over Complex Temporal Specifications*:

- ► RTEC_o supports cyclic dependencies.
- ▶ RTEC \rightarrow supports events with delayed effects.
- ► RTEC_A supports Allen relations.
- Reasoning over Noisy Data Streams[†]:
 - oPIEC: interval-based reasoning over noisy data streams.

^{*}https://github.com/aartikis/rtec

[†]https://github.com/periklismant/opiec

Stream Reasoning over Complex Temporal Specifications*:

- ► RTEC_o supports cyclic dependencies.
- ▶ RTEC \rightarrow supports events with delayed effects.
- ► RTEC_A supports Allen relations.
- Reasoning over Noisy Data Streams[†]:
 - oPIEC: interval-based reasoning over noisy data streams.

Formal Properties.

^{*}https://github.com/aartikis/rtec

[†]https://github.com/periklismant/opiec

Stream Reasoning over Complex Temporal Specifications*:

- ► RTEC_o supports cyclic dependencies.
- ▶ RTEC \rightarrow supports events with delayed effects.
- ► RTEC_A supports Allen relations.
- Reasoning over Noisy Data Streams[†]:
 - oPIEC: interval-based reasoning over noisy data streams.
- Formal Properties.
- Open-source stream reasoning frameworks.

^{*}https://github.com/aartikis/rtec

[†]https://github.com/periklismant/opiec

Summary

Stream Reasoning over Complex Temporal Specifications*:

- ► RTEC_o supports cyclic dependencies.
- ▶ RTEC \rightarrow supports events with delayed effects.
- ► RTEC_A supports Allen relations.
- Reasoning over Noisy Data Streams[†]:
 - oPIEC: interval-based reasoning over noisy data streams.
- Formal Properties.
- Open-source stream reasoning frameworks.
- Reproducible empirical evaluation on large data streams: considerable improvement wrt state-of-the-art.

^{*}https://github.com/aartikis/rtec

[†]https://github.com/periklismant/opiec

Possible Directions:

Explanations for derived situations.

- **Explanations** for derived situations.
- Comparison with automata-based complex event recognition formalisms.

- Explanations for derived situations.
- Comparison with automata-based complex event recognition formalisms.
- Distributed and parallel stream reasoning.

- Explanations for derived situations.
- Comparison with automata-based complex event recognition formalisms.
- Distributed and parallel stream reasoning.
- Stream reasoning in tensor spaces.

- Explanations for derived situations.
- Comparison with automata-based complex event recognition formalisms.
- Distributed and parallel stream reasoning.
- Stream reasoning in tensor spaces.
- Neuro-symbolic stream reasoning.

Appendix

Logic program:

A set of rules $a \leftarrow b_1, \ldots, b_m$, not c_1, \ldots , not c_k .

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

Logic program:

• A set of rules $a \leftarrow b_1, \ldots, b_m$, not c_1, \ldots , not c_k .

Herbrand models of logic program *P*:

▶ The sets of ground atoms for which all rules in *P* are true.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

Logic program:

• A set of rules $a \leftarrow b_1, \ldots, b_m$, not c_1, \ldots , not c_k .

Herbrand models of logic program *P*:

► The sets of ground atoms for which all rules in *P* are true. Semantics of logic program *P*:

▶ Identifies the model of *P* that denotes its intended meaning.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

Logic program:

• A set of rules $a \leftarrow b_1, \ldots, b_m$, not c_1, \ldots , not c_k .

Herbrand models of logic program *P*:

► The sets of ground atoms for which all rules in *P* are true. Semantics of logic program *P*:

Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:

▶ There is a partitioning $P_0, ..., P_n$ of the ground atoms of P, such that, for each ground rule, if $a \in P_i$, then

•
$$b_1, \ldots, b_m \in P_j$$
, where $j \leq i$, and

•
$$c_1, \ldots, c_k \in P_j$$
, where $j < i$.

Semantics of *P*: the unique perfect model of *P*.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Logic program:

• A set of rules $a \leftarrow b_1, \ldots, b_m$, not c_1, \ldots , not c_k .

Herbrand models of logic program *P*:

► The sets of ground atoms for which all rules in *P* are true. Semantics of logic program *P*:

Identifies the model of P that denotes its intended meaning.

Locally stratified logic program P:

▶ There is a partitioning $P_0, ..., P_n$ of the ground atoms of P, such that, for each ground rule, if $a \in P_i$, then

•
$$b_1, \ldots, b_m \in P_j$$
, where $j \leq i$, and

•
$$c_1, \ldots, c_k \in P_j$$
, where $j < i$.

Semantics of *P*: the unique perfect model of *P*.

Our frameworks operate on locally stratified logic programs.

Lloyd J. W., Foundations of logic programming, 2nd edition. 1987.

Przymusinski T. C., On declarative semantics of deductive databases and logic programs. In Foundations of Deductive Databases and Logic Programming. 193–216, 1988.

Run-Time Event Calculus (RTEC)

Predicate	Meaning
happensAt (E, T)	Event E occurs at time T
initiatedAt($F = V, T$)	At time T a period of time for which $F = V$ is initiated
terminatedAt($F = V, T$)	At time T a period of time for which $F = V$ is terminated
holdsFor(F = V, I)	<i>I</i> is the list of the maximal intervals for which $F = V$ holds continuously
holdsAt(F = V, T)	The value of fluent F is V at time T
union_all($[J_1, \ldots, J_n], I$)	$I = (J_1 \cup \ldots \cup J_n)$
intersect_all($[J_1, \ldots, J_n], I$)	$I = (J_1 \cap \ldots \cap J_n)$
$\begin{array}{c} \textbf{relative_complement_all} \\ (l', [J_1, \dots, J_n], l) \end{array}$	$I = I' \setminus (J_1 \cup \ldots \cup J_n)$

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

Run-Time Event Calculus (RTEC)

happensAt(E, T)Event E occurs at time T initiatedAt($F = V, T$)At time T a period of time for which $F = V$ is initiatedterminatedAt($F = V, T$)At time T a period of time for which $F = V$ is terminatedholdsFor($F = V, I$)I is the list of the maximal intervals for which $F = V$ holds continuouslyholdsAt($F = V, T$)The value of fluent F is V at time T union_all($[J_1, \ldots, J_n], I$)intersect_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cup \ldots \cup J_n)$ relative_complement_all $(I', [J_1, \ldots, J_n], I)$ $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	Predicate	Meaning
F = V is initiated terminatedAt($F = V, T$) holdsFor($F = V, I$) F = V is initiated At time T a period of time for which F = V is terminated holdsFor($F = V, I$) I is the list of the maximal intervals for which $F = V$ holds continuously holdsAt($F = V, T$) $I \text{ intersect}_all([J_1, \dots, J_n], I)$ $I = (J_1 \cup \dots \cup J_n)$ intersect_all($[J_1, \dots, J_n], I$) $I = (J_1 \cap \dots \cap J_n)$ relative_complement_all $I = I' \setminus (J_1 \cup \dots \cup J_n)$	happensAt (E, T)	Event E occurs at time T
$F = V \text{ is terminated}$ holdsFor($F = V, I$) $I \text{ is the list of the maximal intervals}$ for which $F = V$ holds continuously holdsAt($F = V, T$) $The value of fluent F \text{ is } V \text{ at time } T$ union_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cup \ldots \cup J_n)$ intersect_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cap \ldots \cap J_n)$ relative_complement_all $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	initiatedAt($F = V, T$)	·
for which $F = V$ holds continuouslyholdsAt($F = V, T$)The value of fluent F is V at time T union_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cup \ldots \cup J_n)$ intersect_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cap \ldots \cap J_n)$ relative_complement_all $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	terminatedAt $(F = V, T)$	·
union_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cup \ldots \cup J_n)$ intersect_all($[J_1, \ldots, J_n], I$) $I = (J_1 \cap \ldots \cap J_n)$ relative_complement_all $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	holdsFor(F = V, I)	
intersect_all($[J_1, \ldots, J_n]$, I) $I = (J_1 \cap \ldots \cap J_n)$ relative_complement_all $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	holdsAt(F = V, T)	The value of fluent F is V at time T
relative_complement_all $I = I' \setminus (J_1 \cup \ldots \cup J_n)$	union_all($[J_1, \ldots, J_n], I$)	$I = (J_1 \cup \ldots \cup J_n)$
•	intersect_all($[J_1, \ldots, J_n], I$)	$I = (J_1 \cap \ldots \cap J_n)$
	•	$I=I'\setminus (J_1\cup\ldots\cup J_n)$

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

Run-Time Event Calculus (RTEC): Fluent Specification

Simple Fluents:

```
initiatedAt(F = V, T) \leftarrow
     happensAt(E_{ln_1}, T)[,
     conditions].
terminatedAt(F = V, T) \leftarrow
     happensAt(E_{T_1}, T)[,
     conditions].
where conditions:
<sup>0-K</sup>[not] happensAt(E_k, T),
<sup>0-M</sup>[not] holdsAt(F_m = V_m, T),
^{O-N} at emporal-constraint,
```

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

Run-Time Event Calculus (RTEC): Fluent Specification

Simple Fluents:

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_1}, T)[, conditions].

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T)[, conditions].

where conditions:

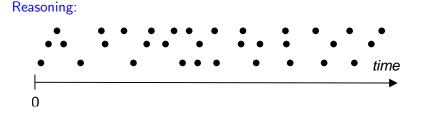
^{0-K}[not] happensAt(E_k, T), ^{0-M}[not] holdsAt($F_m = V_m, T$), ^{0-N} atemporal-constraint_n

Statically Determined Fluents:

holdsFor(F = V, I) \leftarrow holdsFor($F_1 = V_1, I_1$)[, holdsFor($F_2 = V_2, I_2$), ... holdsFor($F_n = V_n, I_n$), intervalOperation(L_1, I_{n+1}), ... intervalOperation(L_m, I)].

where intervalOperation: union_all or intersect_all or relative_complement_all

Artikis et al., An Event Calculus for Event Recognition. In IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

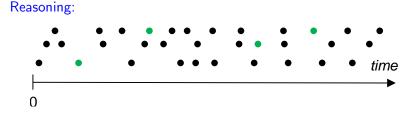

Definition:

. . .

initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt $(F = V, T) \leftarrow$ happensAt (E_{In_i}, T) , [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_I}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]


Definition:

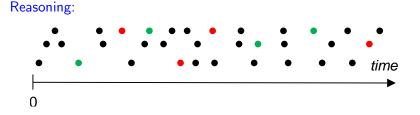
. . .

initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

. . .


Definition:

. . .

initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

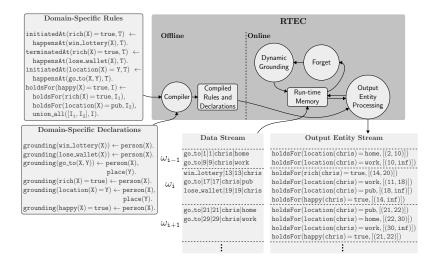
initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions] terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

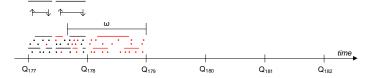
Definition:

. . .

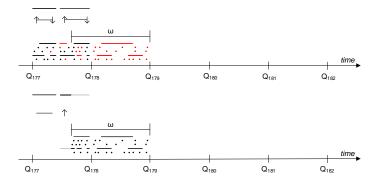
initiatedAt(F = V, T) \leftarrow happensAt(E_{ln_1}, T), [conditions]

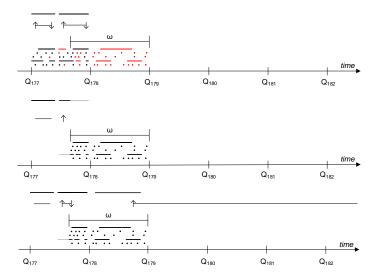

initiatedAt(F = V, T) \leftarrow happensAt(E_{In_i}, T), [conditions]

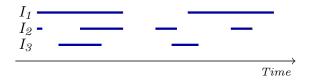
Reasoning: **holdsFor**(F = V, I)


terminatedAt(F = V, T) \leftarrow happensAt(E_{T_1}, T), [conditions]

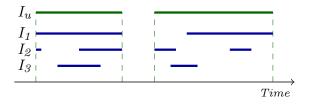
terminatedAt(F = V, T) \leftarrow happensAt(E_{T_j}, T), [conditions]

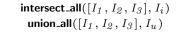

RTEC Architecture

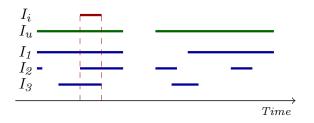

RTEC: Windowing

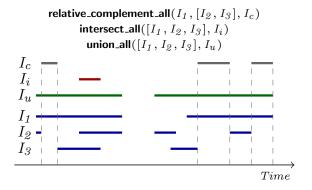


RTEC: Windowing




RTEC: Windowing

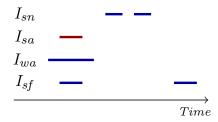


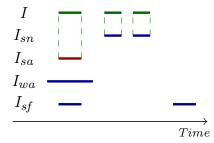


union_all($[I_1, I_2, I_3], I_u$)



 $\begin{array}{l} \mbox{holdsFor}(anchoredOrMoored(Vessel) = \mbox{true}, \ l) \leftarrow \\ \mbox{holdsFor}(stopped(Vessel) = farFromPorts, \ l_{sf}), \\ \mbox{holdsFor}(withinArea(Vessel, anchorage) = true, \ l_{wa}), \\ \mbox{intersect_all}([I_{sf}, I_{wa}], \ l_{sa}), \\ \mbox{holdsFor}(stopped(Vessel) = nearPorts, \ l_{sn}), \\ \mbox{union_all}([I_{sa}, I_{sn}], \ l). \end{array}$


 $\begin{array}{l} \textbf{holdsFor}(anchoredOrMoored(Vessel) = true, 1) \leftarrow \\ \textbf{holdsFor}(stopped(Vessel) = farFromPorts, I_{sf}), \\ \textbf{holdsFor}(withinArea(Vessel, anchorage) = true, I_{wa}), \\ \textbf{intersect_all}([I_{sf}, I_{wa}], I_{sa}), \\ \textbf{holdsFor}(stopped(Vessel) = nearPorts, I_{sn}), \\ \textbf{union_all}([I_{sa}, I_{sn}], 1). \end{array}$


 $\begin{array}{l} \textbf{holdsFor}(anchoredOrMoored(Vessel) = true, 1) \leftarrow \\ \textbf{holdsFor}(stopped(Vessel) = farFromPorts, I_{sf}), \\ \textbf{holdsFor}(withinArea(Vessel, anchorage) = true, I_{wa}), \\ \textbf{intersect_all}([I_{sf}, I_{wa}], I_{sa}), \\ \textbf{holdsFor}(stopped(Vessel) = nearPorts, I_{sn}), \\ \textbf{union_all}([I_{sa}, I_{sn}], 1). \end{array}$

 $\begin{array}{l} \mbox{holdsFor}(anchoredOrMoored(Vessel) = \mbox{true}, \ l) \leftarrow \\ \mbox{holdsFor}(stopped(Vessel) = farFromPorts, \ l_{sf}), \\ \mbox{holdsFor}(withinArea(Vessel, anchorage) = true, \ l_{wa}), \\ \mbox{intersect_all}([I_{sf}, I_{wa}], \ l_{sa}), \\ \mbox{holdsFor}(stopped(Vessel) = nearPorts, \ l_{sn}), \\ \mbox{union_all}([I_{sa}, I_{sn}], \ l). \end{array}$

 $\begin{aligned} & \mathsf{holdsFor}(anchoredOrMoored(Vessel) = \mathsf{true}, \ I) \leftarrow \\ & \mathsf{holdsFor}(stopped(Vessel) = farFromPorts, \ I_{sf}), \\ & \mathsf{holdsFor}(withinArea(Vessel, anchorage) = true, \ I_{wa}), \\ & \mathsf{intersect_all}([I_{sf}, I_{wa}], \ I_{sa}), \\ & \mathsf{holdsFor}(stopped(Vessel) = nearPorts, \ I_{sn}), \\ & \mathsf{union_all}([I_{sa}, I_{sn}], \ I). \end{aligned}$

Voting: Cyclic Dependencies

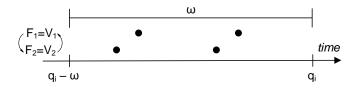
initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T).

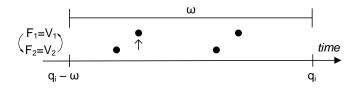
Voting: Cyclic Dependencies

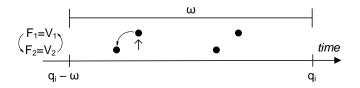
initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T). initiatedAt(status(M) = voting, T) \leftarrow happensAt(second(S, M), T), holdsAt(status(M) = proposed, T).

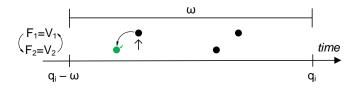
Voting: Cyclic Dependencies

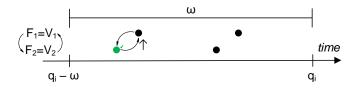
initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T). initiatedAt(status(M) = voting, T) \leftarrow happensAt(second(S, M), T), holdsAt(status(M) = proposed, T). initiatedAt(status(M) = voted, T) \leftarrow happensAt(close_ballot(C, M), T), holdsAt(status(M) = voting, T).

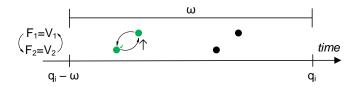

initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T).initiatedAt(status(M) = voting, T) \leftarrow happensAt(second(S, M), T), holdsAt(status(M) = proposed, T).initiatedAt(status(M) = voted, T) \leftarrow happensAt($close_ballot(C, M), T$), holdsAt(status(M) = voting, T).initiatedAt(status(M) = null, T) \leftarrow happensAt(declare(C, M, Res), T), holdsAt(status(M) = voted, T).

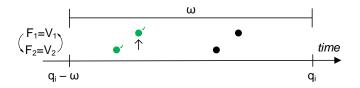

initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T).initiatedAt(status(M) = voting, T) \leftarrow happensAt(second(S, M), T), holdsAt(status(M) = proposed, T).initiatedAt(status(M) = voted, T) \leftarrow happensAt($close_ballot(C, M), T$), holdsAt(status(M) = voting, T).initiatedAt(status(M) = null, T) \leftarrow happensAt(declare(C, M, Res), T), holdsAt(status(M) = voted, T).

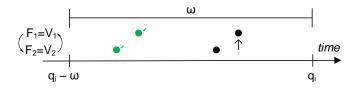

initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T).initiatedAt(status(M) = voting, T) \leftarrow happensAt(second(S, M), T), holdsAt(status(M) = proposed, T).initiatedAt(status(M) = voted, T) $\leftarrow \varsigma$ happensAt($close_ballot(C, M), T$). holdsAt(status(M) = voting, T).initiatedAt(status(M) = null, T) \leftarrow $happensAt(declare(C, M, Res), T), \checkmark$ holdsAt(status(M) = voted, T).

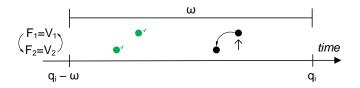

initiatedAt(status(M) = proposed, T) \leftarrow happensAt(propose(P, M), T), holdsAt(status(M) = null, T).initiatedAt(status(M) = voting, T) \leftarrow_{ς} happensAt(second(S, M), T), holdsAt(status(M) = proposed, T).initiatedAt(status(M) = voted, T) $\leftarrow \varsigma$ happensAt(close_ballot(C, M), T), holdsAt(status(M) = voting, T). initiatedAt(status(M) = null, T) \leftarrow $happensAt(declare(C, M, Res), T), \checkmark$ holdsAt(status(M) = voted, T).

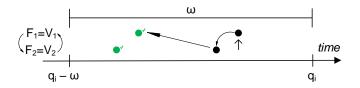

initiatedAt(status(M) = proposed, T) $\leftarrow \prec$ happensAt(propose(P, M), T), - holdsAt(status(M) = null, T). initiatedAt(status(M) = voting, T) $\leftarrow \varsigma$ happensAt(second(S, M), T), holdsAt(status(M) = proposed, T). initiatedAt(status(M) = voted, T) $\leftarrow \triangleleft$ happensAt(close_ballot(C, M), T), holdsAt(status(M) = voting, T). \forall initiatedAt(*status*(*M*) = *null*, *T*) \leftarrow happensAt(declare(C, M, Res), T), holdsAt(status(M) = voted, T).

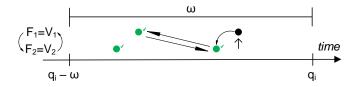


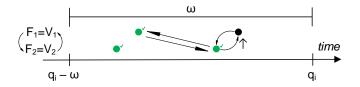


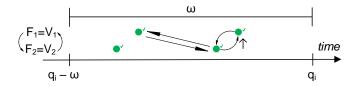


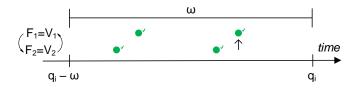


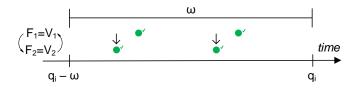


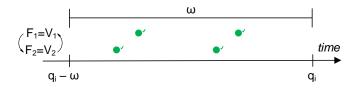


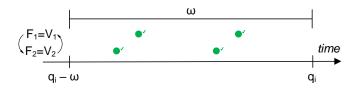


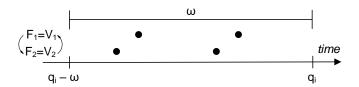


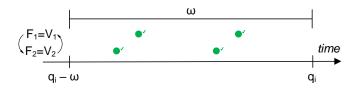


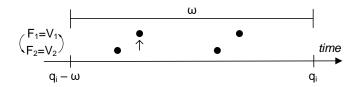


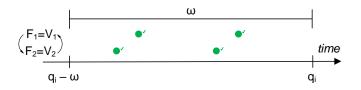


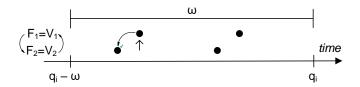


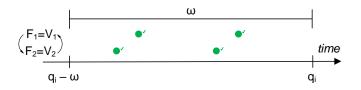


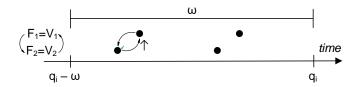

RTEC_o

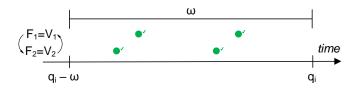

Event Calculus

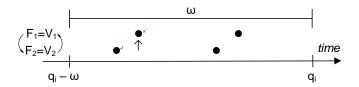

RTEC_o

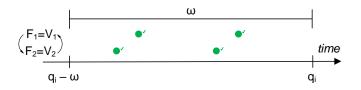

Event Calculus

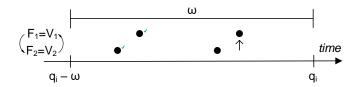

RTEC_o

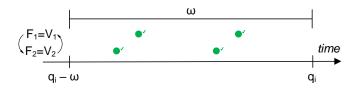

Event Calculus

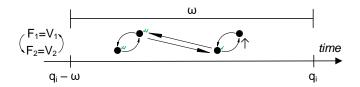

RTEC_o

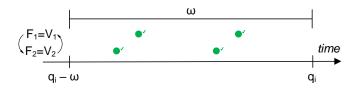

Event Calculus

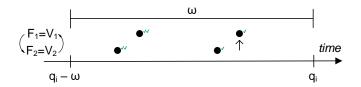

RTEC_o

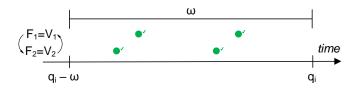

Event Calculus

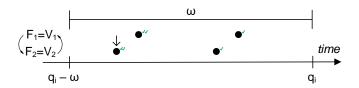

RTEC_o

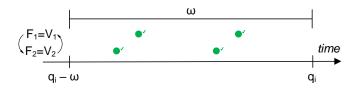

Event Calculus

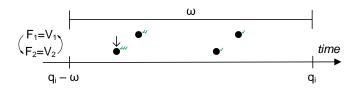

RTEC_o

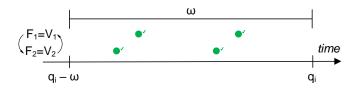

Event Calculus

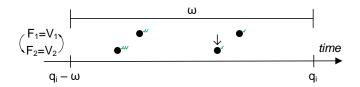

RTEC_o

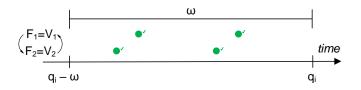

Event Calculus

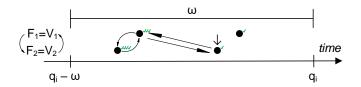

RTEC_o

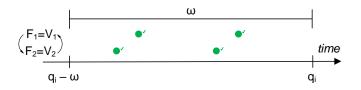

Event Calculus

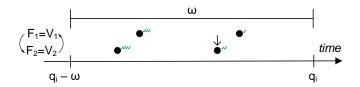

RTEC_o

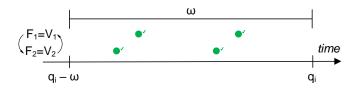

Event Calculus

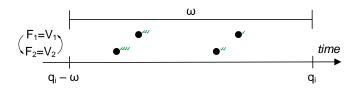

RTEC_o

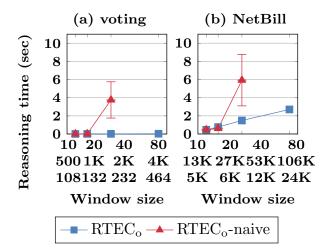

Event Calculus

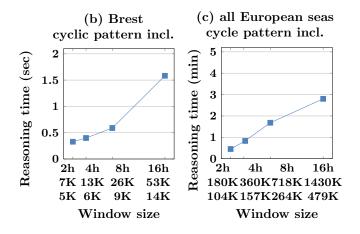

RTEC_o

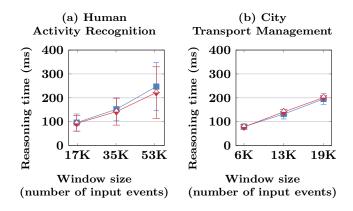

Event Calculus

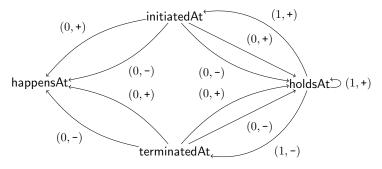

RTEC_o

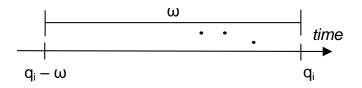

Event Calculus

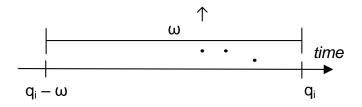

RTEC_o

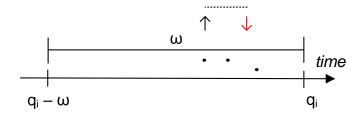

Event Calculus

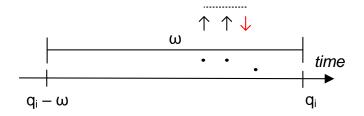

RTECo: Experimental Results

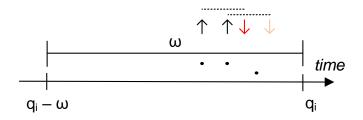

RTEC_o: Experimental Results

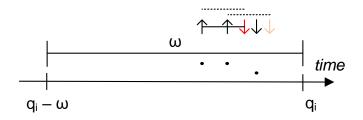

RTEC_o: Experimental Results

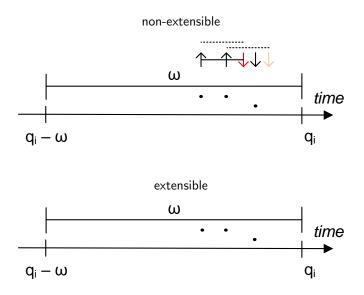


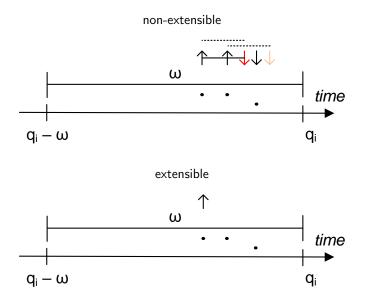

Semantics of RTEC_o



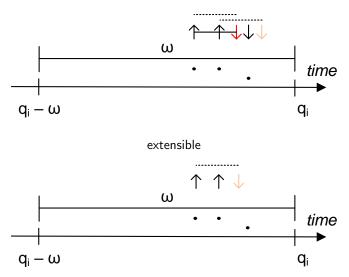

The cycle-sum graph of an RTEC_o program.

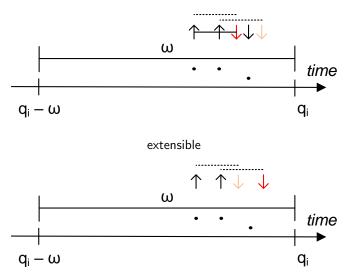


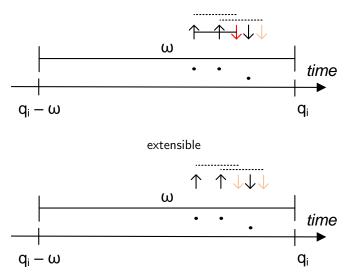


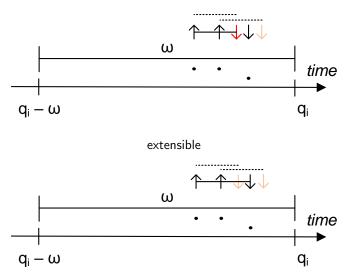


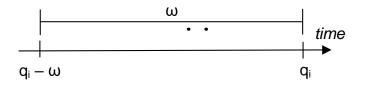


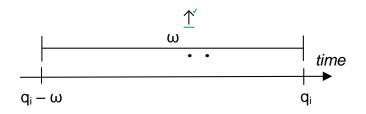


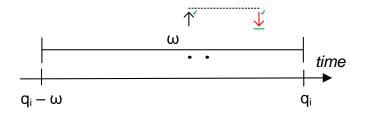


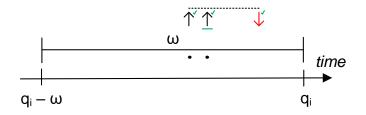


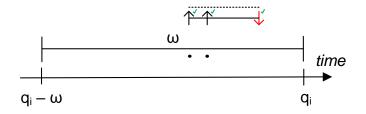


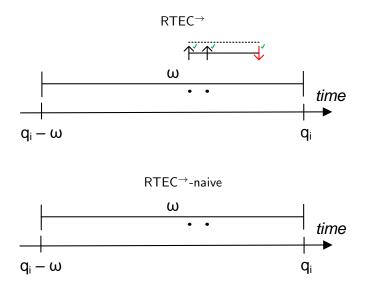


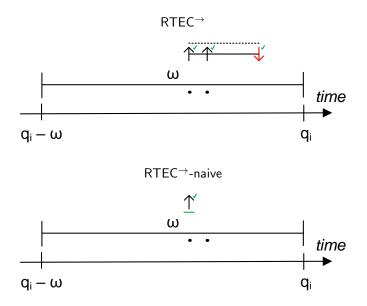


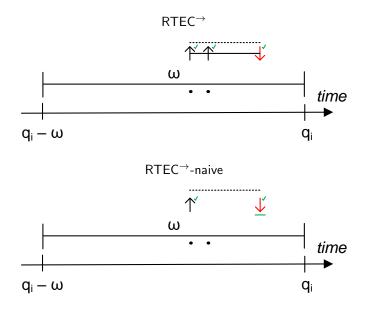


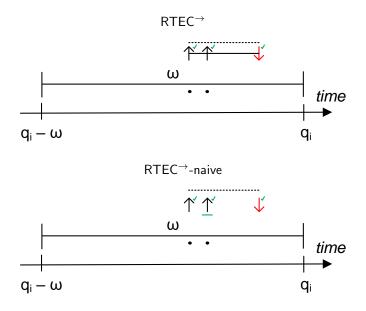


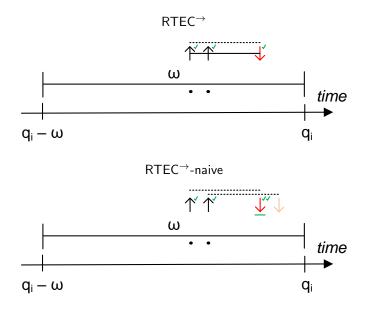


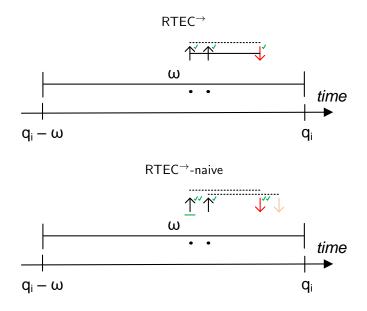


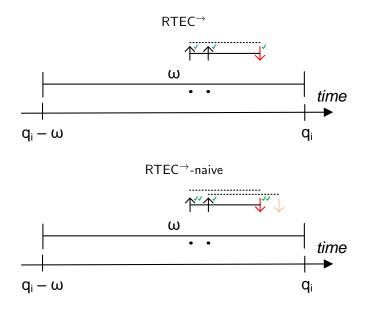


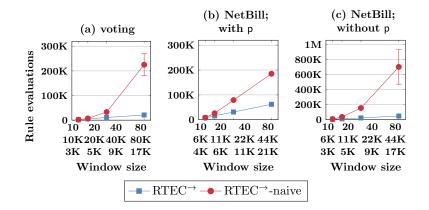


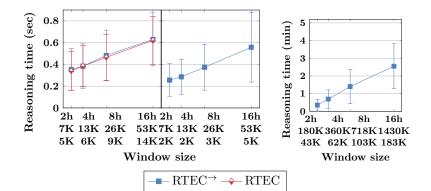


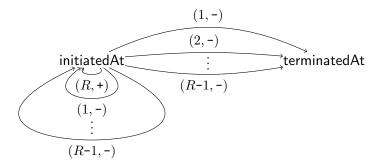




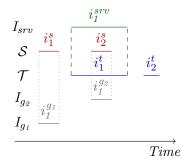






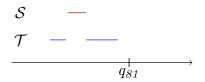

$RTEC^{\rightarrow}$: Experimental Results

$RTEC^{\rightarrow}$: Experimental Results


Semantics of RTEC $^{\rightarrow}$

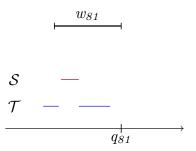
The cycle-sum graph of an RTEC $^{\rightarrow}$ program.

RTEC_A: Allen Relations

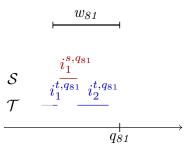

 $\begin{array}{l} \mbox{holdsFor}(suspiciousRendezVous(Vessel_1, Vessel_2) = \mbox{true}, l) \leftarrow \\ \mbox{holdsFor}(gap(Vessel_1) = farFromPorts, I_{g_1}), \\ \mbox{holdsFor}(gap(Vessel_2) = farFromPorts, I_{g_2}), \\ \mbox{holdsFor}(proximity(Vessel_1, Vessel_2) = \mbox{true}, \mathcal{T}), \\ \mbox{union_all}([I_{g_1}, I_{g_2}], \mathcal{S}), \\ \mbox{allen}(\mbox{during}, \mathcal{S}, \mathcal{T}, \mbox{target}, l). \end{array}$

RTEC_A: Windowing

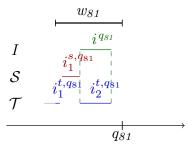
 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},I). \end{aligned}$


Query time: q_{81}

RTEC_A: Windowing

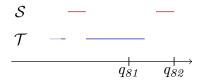

 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},I). \end{aligned}$

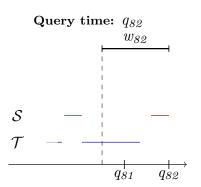
Query time: q_{81}

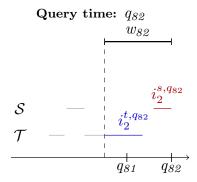


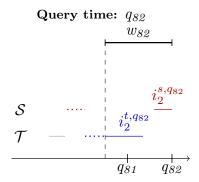
 $\begin{aligned} & \mathsf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true}, I) \leftarrow \\ & \mathsf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \mathsf{true},\mathcal{S}), \\ & \mathsf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ & \mathsf{allen}(\mathsf{meets},\mathcal{S},\mathcal{T},\mathsf{target},I). \end{aligned}$

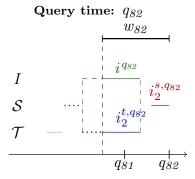
Query time: q_{81}




Query time: q_{81}




 $\begin{array}{l} \textbf{holdsFor}(\textit{disappearedInArea}(\textit{Vessel},\textit{AreaType}) = \textsf{true},\textit{I}) \leftarrow \\ \textbf{holdsFor}(\textit{withinArea}(\textit{Vessel},\textit{AreaType}) = \textsf{true},\mathcal{S}), \\ \textbf{holdsFor}(\textit{gap}(\textit{Vessel}) = \textit{farFromPorts},\mathcal{T}), \\ \textbf{allen}(\textsf{meets},\mathcal{S},\mathcal{T},\textsf{target},\textit{I}). \end{array}$


Query time: q_{82}

RTECA: Experimental Evaluation

Batch setting.

Streaming setting.

Batch size	Reasoning Time			Win	Window size		Reasoning Time		Output Interval Pairs	
Input Intervals	RTEC _A	AEGLE D ² IA		Days	Input Intervals	RTEC _A	D ² IA	RTEC _A	D ² IA	
200 2K 20K 200K	1 14 154 1.8K	980 4K 71.5K MEM	2K 6K 395K >3.6M	1 2 4 8 16	125 250 500 1K 2K	1 2 4 8 15	48 164 568 1.7K 7.8K	5K 19K 72K 237K 878K	5K 18K 71K 236K 874K	

 $\begin{array}{ll} \mbox{initiatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{happensAt}(walking(P_1),\ T), & \mbox{happensAt}(walking(P_2),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{true},\ T), & \mbox{holdsAt}(orientation(P_1,P_2)=\mbox{true},\ T). & \mbox{terminatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{happensAt}(walking(P_1),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{frue},\ T). & \mbox{terminatedAt}(walking(P_1),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{frue},\ T). & \mbox{holdsAt}(close(P_1,P_2)=\mbox{true},\ T). & \mbox{terminatedAt}(walking(P_1),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{frue},\ T). & \mbox{holdsAt}(close(P_1,P_2)=\mbox{frue},\ T). & \mbox{terminatedAt}(walking(P_1),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{frue},\ T). & \mbox{holdsAt}(close(P_1,P_2)=\mbox{holdsAt}(close(P$

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

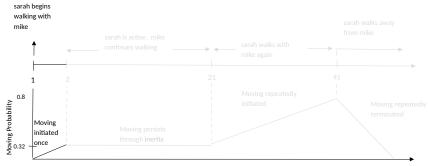
0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).

$$\begin{split} & P(\textbf{initiatedAt}(moving(mike, sarah) = \textbf{true}, 1)) = \\ & P(\textbf{happensAt}(walking(mike), 1)) \times \\ & P(\textbf{happensAt}(walking(sarah), 1)) \times \\ & P(\textbf{holdsAt}(close(mike, sarah) = \textbf{true}, 1)) \times \\ & P(\textbf{holdsAt}(orientation(mike, sarah) = \textbf{true}, 1)) \\ & = 0.7 \times 0.46 \times 1 \times 1 = 0.322 \end{split}$$

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

 $holdsAt(close(P_1, P_2) = false, T).$

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).

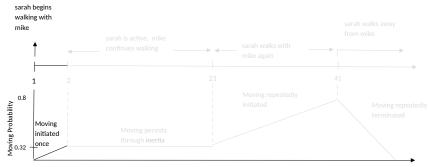

$$P(\text{holdsAt}(CE = \text{true}, t)) = P(\text{initiatedAt}(CE = \text{true}, t-1) \lor (\text{holdsAt}(CE = \text{true}, t-1) \land \neg \text{terminatedAt}(CE = \text{true}, t-1)))$$

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

 $holdsAt(close(P_1, P_2) = false, T).$

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).

$$\begin{split} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 2)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 1) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 1) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 1))) \\ & = 0.322 + 0 \times 1 - 0.322 \times 0 \times 1 = 0.322 \end{split}$$

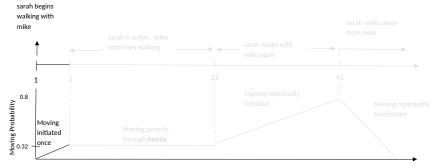

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).

$$\begin{split} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 2)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 1) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 1) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 1))) \\ & = 0.322 + 0 \times 1 - 0.322 \times 0 \times 1 = 0.322 \end{split}$$

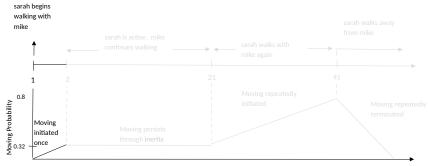


Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.73 :: happensAt(walking(mike), 2). 0.55 :: happensAt(active(sarah), 2). ···

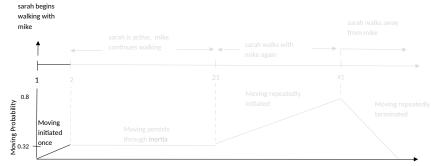

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.73 :: happensAt(walking(mike), 2). 0.55 :: happensAt(active(sarah), 2). ····

$$\begin{split} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 3)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 2) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 2) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 2))) \\ & = 0 + 0.322 \times 1 - 0 \times 0.322 \times 1 = 0.322 \end{split}$$

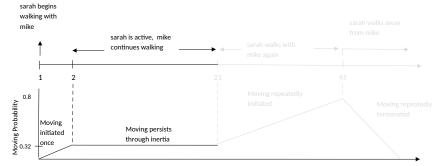


Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.45 :: happensAt(walking(mike), 20). 0.14 :: happensAt(active(sarah), 20).

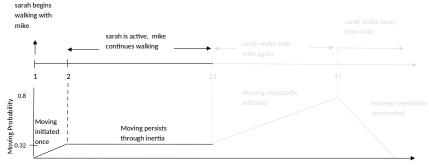

Video Frames

initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($orientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$),

holdsAt($close(P_1, P_2) = false, T$).

0.45 :: happensAt(walking(mike), 20). 0.14 :: happensAt(active(sarah), 20).

 $\begin{aligned} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 21)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 20) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 20) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 20))) \\ & = 0 + 0.322 \times 1 - 0 \times 0.322 \times 1 = 0.322 \end{aligned}$

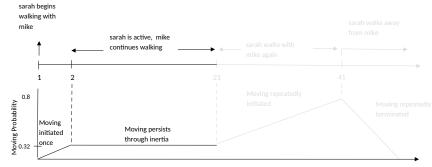

Video Frames

initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($orientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$),

holdsAt($close(P_1, P_2) = false, T$).

0.45 :: happensAt(walking(mike), 20). 0.14 :: happensAt(active(sarah), 20).

 $\begin{aligned} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 21)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 20) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 20) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 20))) \\ & = 0 + 0.322 \times 1 - 0 \times 0.322 \times 1 = 0.322 \end{aligned}$

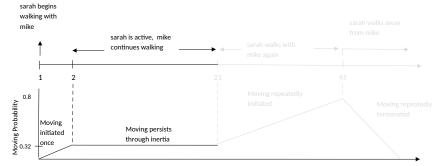


Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.39 :: happensAt(walking(mike), 21). 0.28 :: happensAt(walking(sarah), 21). ···

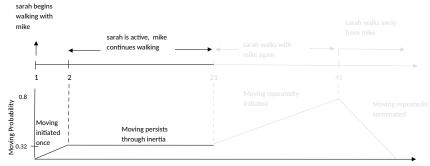

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.39 :: happensAt(walking(mike), 21). 0.28 :: happensAt(walking(sarah), 21). ···

 $\begin{array}{l} P(\textbf{initiatedAt}(moving(mike, sarah) = \texttt{true}, 21)) = \\ P(\textbf{happensAt}(walking(mike), 21)) \times \\ P(\textbf{happensAt}(walking(sarah), 21)) \times \\ P(\textbf{holdsAt}(close(mike, sarah) = \texttt{true}, 21)) \times \\ P(\textbf{holdsAt}(orientation(mike, sarah) = \texttt{true}, 21)) \\ = 0.39 \times 0.28 \times 1 \times 1 = 0.11 \end{array}$

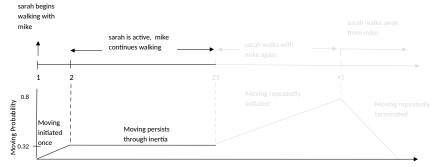


Video Frames

- initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($orientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow
 - happensAt(walking(P_1), T), holdsAt(close(P_1 , P_2) = false, T).

0.39 :: happensAt(*walking*(*mike*), 21). 0.28 :: happensAt(*walking*(*sarah*), 21). · · ·

$$\begin{split} & P(\textbf{holdsAt}(moving(mike, sarah) = \texttt{true}, 22)) = \\ & P(\textbf{initiatedAt}(moving(mike, sarah) = \texttt{true}, 21) \lor \\ & (\textbf{holdsAt}(moving(mike, sarah) = \texttt{true}, 21) \land \\ & \neg \textbf{terminatedAt}(moving(mike, sarah) = \texttt{true}, 21))) \\ & = 0.11 + 0.322 \times 1 - 0.11 \times 0.322 \times 1 = 0.39 \end{split}$$

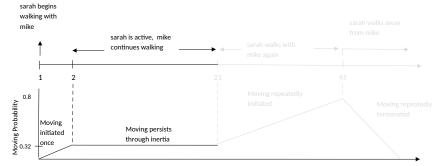


Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.28 :: happensAt(walking(mike), 40). 0.18 :: happensAt(walking(sarah), 40).

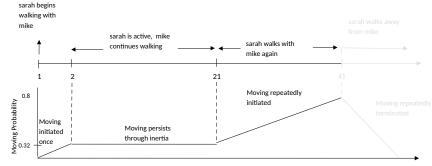

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.28 :: happensAt(walking(mike), 40). 0.18 :: happensAt(walking(sarah), 40).

 $\begin{aligned} & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 40)) = \\ & P(\text{happensAt}(walking(mike), 40)) \times \\ & P(\text{happensAt}(walking(sarah), 40)) \times \\ & P(\text{holdsAt}(close(mike, sarah) = \text{true}, 40)) \times \\ & P(\text{holdsAt}(orientation(mike, sarah) = \text{true}, 40)) = \\ & 0.28 \times 0.18 \times 1 \times 1 = 0.05 \end{aligned}$

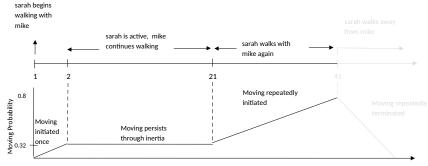

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.28 :: happensAt(walking(mike), 40). 0.18 :: happensAt(walking(sarah), 40).

$$\begin{split} & P(\text{holdsAt}(moving}(mike, sarah) = \text{true}, 41)) = \\ & P(\text{initiatedAt}(moving}(mike, sarah) = \text{true}, 40) \lor \\ & (\text{holdsAt}(moving}(mike, sarah) = \text{true}, 40) \land \\ & \neg \text{terminatedAt}(moving}(mike, sarah) = \text{true}, 40))) \\ & = 0.05 + 0.79 \times 1 - 0.05 \times 0.79 \times 1 = 0.80 \end{split}$$

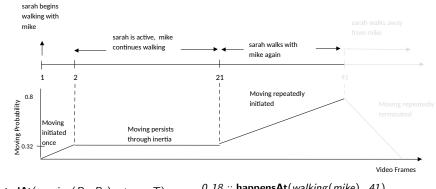


Video Frames

- initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
 - happensAt(walking(P_1), T), holdsAt(close(P_1, P_2) = false, T).

0.28 :: happensAt(walking(mike), 40). 0.18 :: happensAt(walking(sarah), 40).

$$\begin{split} & P(\textbf{holdsAt}(moving(mike, sarah) = \textsf{true}, 41)) = \\ & P(\textbf{initiatedAt}(moving(mike, sarah) = \textsf{true}, 40) \lor \\ & (\textbf{holdsAt}(moving(mike, sarah) = \textsf{true}, 40) \land \\ & \neg \textbf{terminatedAt}(moving(mike, sarah) = \textsf{true}, 40))) \\ & = 0.05 + 0.79 \times 1 - 0.05 \times 0.79 \times 1 = 0.80 \end{split}$$

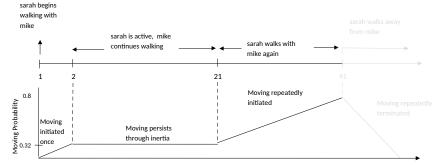


Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

0.18 :: happensAt(walking(mike), 41). 0.79 :: happensAt(inactive(sarah), 41). ···

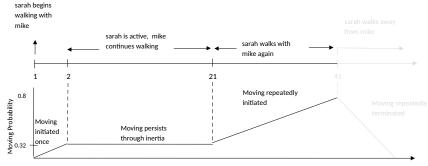


initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($orientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$),

holdsAt($close(P_1, P_2) = false, T$).

0.18 :: happensAt(walking(mike), 41). 0.79 :: happensAt(inactive(sarah), 41). · · ·

$$\begin{split} P(\text{terminatedAt}(moving(mike, sarah) = \text{true}, 41)) = \\ P(\text{happensAt}(walking(mike), 41)) \times \\ P(\text{holdsAt}(close(mike, sarah) = \text{false}, 41)) \\ = 0.18 \times 1 = 0.18 \end{split}$$

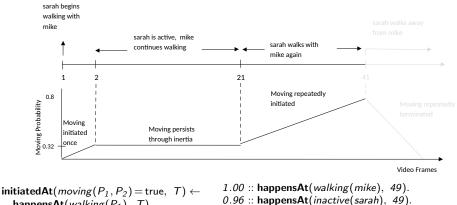


Video Frames

- $\begin{array}{ll} \mbox{initiatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{happensAt}(walking(P_1),\ T), & \mbox{happensAt}(walking(P_2),\ T), & \mbox{holdsAt}(close(P_1,P_2)=\mbox{true},\ T), & \mbox{holdsAt}(orientation(P_1,P_2)=\mbox{true},\ T). & \mbox{terminatedAt}(moving(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{true}(P_1,P_2)=\mbox{true},\ T) \leftarrow & \mbox{true}(P_1,P_2)=$
 - happensAt(walking(P_1), T), holdsAt(close(P_1, P_2) = false, T).

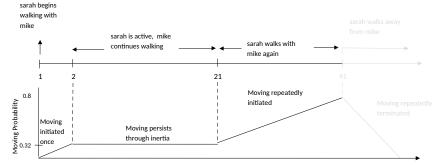
0.18 :: happensAt(*walking*(*mike*), 41). 0.79 :: happensAt(*inactive*(*sarah*), 41). ...

$$\begin{split} & P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 42)) = \\ & P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 41) \lor \\ & (\text{holdsAt}(moving(mike, sarah) = \text{true}, 41) \land \\ & \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 41))) \\ &= 0 + 0.8 \times (1 - 0.18) - 0 \times 0.8 \times (1 - 0.18) = 0.66 \end{split}$$



Video Frames

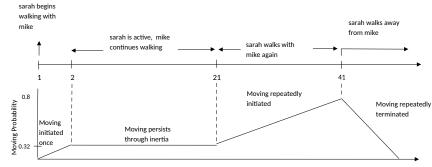
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),


holdsAt($close(P_1, P_2) = false, T$).

1.00 :: happensAt(walking(mike), 49). 0.96 :: happensAt(inactive(sarah), 49).

happensAt(walking(
$$P_1$$
), T), 0.96 :: happ
happensAt(walking(P_2), T),
holdsAt($close(P_1, P_2) = true, T$),
holdsAt($orientation(P_1, P_2) = true, T$).
terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow
happensAt(walking(P_1), T),
holdsAt($close(P_1, P_2) = true, T$) \leftarrow

 $\begin{aligned} & P(\textbf{terminatedAt}(moving(mike, sarah) = \textbf{true}, 49)) = \\ & P(\textbf{happensAt}(walking(mike), 49)) \times \\ & P(\textbf{holdsAt}(close(mike, sarah) = \textbf{false}, 49)) \\ & = 1 \times 1 = 1 \end{aligned}$


Video Frames

initiatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$), happensAt($walking(P_2), T$), holdsAt($close(P_1, P_2) = true, T$), holdsAt($orientation(P_1, P_2) = true, T$). terminatedAt($moving(P_1, P_2) = true, T$) \leftarrow happensAt($walking(P_1), T$),

holdsAt($close(P_1, P_2) = false, T$).

1.00 :: happensAt(walking(mike), 49). 0.96 :: happensAt(inactive(sarah), 49).

 $P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 50)) = P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 49) \lor (\text{holdsAt}(moving(mike, sarah) = \text{true}, 49) \land \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 49))) = 0+0.07 \times 0-0 \times 0.07 \times 0 = 0$

Video Frames

initiatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T), happensAt(walking(P_2), T), holdsAt(close(P_1, P_2) = true, T), holdsAt(orientation(P_1, P_2) = true, T). terminatedAt(moving(P_1, P_2) = true, T) \leftarrow happensAt(walking(P_1), T),

holdsAt($close(P_1, P_2) = false, T$).

1.00 :: happensAt(walking(mike), 49). 0.96 :: happensAt(inactive(sarah), 49).

 $P(\text{holdsAt}(moving(mike, sarah) = \text{true}, 50)) = P(\text{initiatedAt}(moving(mike, sarah) = \text{true}, 49) \lor (\text{holdsAt}(moving(mike, sarah) = \text{true}, 49) \land \neg \text{terminatedAt}(moving(mike, sarah) = \text{true}, 49))) = 0 + 0.07 \times 0 - 0 \times 0.07 \times 0 = 0$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1

Time	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

 $L[i] = In[i] - \mathcal{T}$

Time	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

$$\sum_{i=s}^{e} L[i] \ge 0 \Leftrightarrow P([s,e]) \ge \mathcal{T}$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9

$$prefix[i] = \sum_{j=1}^{i} L[j]$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp										

 $dp[i] = \max_{i \le j \le n} (prefix[j])$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp										-0.9

$$dp[10] = \max_{10 \leq j \leq 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp									-0.9	-0.9

$$dp[9] = \max_{\substack{9 \le j \le 10}} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp								-0.9	-0.9	-0.9

 $dp[8] = \max_{8 \le j \le 10} (prefix[j])$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp							-0.9	-0.9	-0.9	-0.9

$$dp[7] = \max_{7 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp						-0.4	-0.9	-0.9	-0.9	-0.9

 $dp[6] = \max_{6 \le j \le 10} (prefix[j])$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

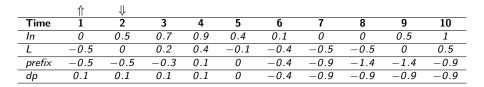
 $dp[i] = \max_{i \le j \le 10} (prefix[j])$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = dp[e] - prefix[s-1] \text{ if } s > 1$$
$$= dp[e] \text{ if } s = 1$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = dp[e] - prefix[s-1] \text{ if } s > 1$$
$$= dp[e] \text{ if } s = 1$$


$$dprange[s,e] \ge 0 \Rightarrow \exists e^* : e^* \ge e, \ P([s,e^*]) \ge \mathcal{T}$$

	↑↓									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

	↑↓									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1,1] = dp[1] = 0.1 \ge 0$$

	↑	\Downarrow								
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1,2] = dp[2] = 0.1 \ge 0$$

	↑		\Downarrow							
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 3] = dp[3] = 0.1 \ge 0$$

	↑			₩						
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1,4] = dp[4] = 0.1 \ge 0$$

	↑				\Downarrow					
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1,5] = dp[5] = 0 \ge 0$$

	↑					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 6] = dp[6] = -0.4 < 0$$

	↑					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 6] = dp[6] = -0.4 < 0$$

		↑				\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$dprange[2, 6] = dp[6] - prefix[1] = 0.1 \ge 0$

		↑					\Downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

dprange[2,7] = dp[7] - prefix[1] = -0.4 < 0

		↑					\Downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

dprange[2, 7] = dp[7] - prefix[1] = -0.4 < 0

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Interval-based Recognition¹

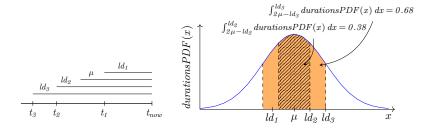
Interval Computation Correctness

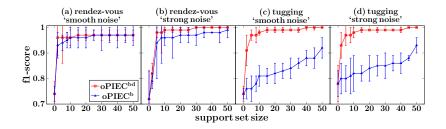
An interval is computed iff it is a probabilistic maximal interval.

¹Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

Interval-based Recognition¹

Interval Computation Correctness

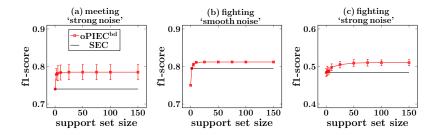

An interval is computed iff it is a probabilistic maximal interval.

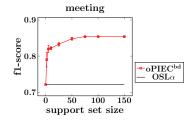

Complexity

The computation of probabilistic maximal intervals is linear to the dataset size.

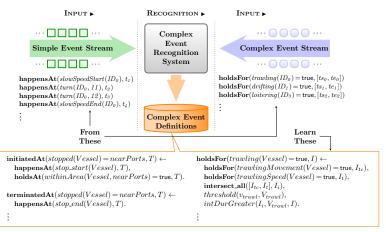
¹Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

Deletion Probabilities of Support Set Elements

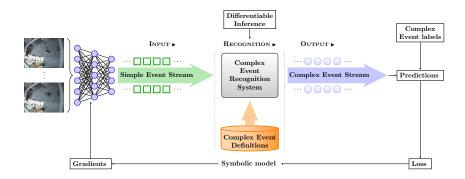



(a) Total run-times of $oPIEC^{bd}$, $oPIEC^{b}$ and PIEC in seconds when processing data streams of increasing size.

total stream size (number of time-points)	1К	2К	4K	8K
PIEC	1.92 ± 0.32	7.53 ± 1.24	$\textbf{29.76} \pm \textbf{4.9}$	134.63 ± 22
oPIEC ^b	$\textbf{0.09} \pm \textbf{0.02}$	$\textbf{0.19} \pm \textbf{0.05}$	$\textbf{0.38} \pm \textbf{0.1}$	$\textbf{0.7} \pm \textbf{0.2}$
oPIEC ^{bd}	$\textbf{0.09} \pm \textbf{0.02}$	$\textbf{0.19} \pm \textbf{0.05}$	0.39 ± 0.1	0.72±0.23


(b) Total run-times of $\mathsf{oPIEC}^{\mathsf{bd}}$ and $\mathsf{oPIEC}^{\mathsf{b}}$ in seconds as the support set size increases.

support set size (number of elements)	50	100	200	400
оРІЕС ^ь оРІЕС ^{ьd}		$\begin{array}{c} \textbf{1.27} \pm \textbf{0.5} \\ \textbf{1.27} \pm \textbf{0.53} \end{array}$		


Machine Learning for Complex Event Recognition

Katzouris et al, Online Learning Probabilistic Event Calculus Theories in Answer Set Programming. Theory and Practice of Logic Programming, 2023.

Michelioudakis et al, Online semi-supervised learning of composite event rules by combining structure and mass-based predicate similarity. Machine Learning, 2024.

Neuro-Symbolic Complex Event Recognition

Marra et al, From statistical relational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, 2024.