# **Temporal Specification Optimisation for the Event Calculus**

#### **Temporal Pattern Matching over Streams**



## The Run-Time Event Calculus (RTEC)

The **Event Calculus** is a logic programming formalism for representing and reasoning about the effects of events over time. Key components:

- Linear time-line with integer time-points.
- ► Instantaneous events.
- ► Time-varying properties called **fluents**.

A fluent-value pair (FVP) F = V follows the **law of inertia**, i.e., in the absence of information to the contrary, fluent F continues to have value V over time, allowing for succinct and intuitive definitions for FVPs.

**RTEC** is a formal computational framework that derives FVPs over event streams. In RTEC, an FVP may be simple or statically determined.

```
Statically Determined FVP (SDF):
Simple FVP (SF):
initiatedAt(F = V, T) \leftarrow
                                       holdsFor(F = V, I) \leftarrow
     happensAt(E_{In_1}, T)[,
                                          holdsFor(F_1 = V_1, I_1)[,
     conditions].
                                          holdsFor(F_2 = V_2, I_2), \ldots
                                          holdsFor(F_n = V_n, I_n),
terminatedAt(F = V, T) \leftarrow
                                          intervalConstruct(L_1, I_{n+1}), \ldots
     happensAt(E_{T_1}, T)[,
                                           intervalConstruct(L_m, I)].
     conditions].
                                        where intervalConstruct:
                                         union_all or
where conditions:
                                         intersect_all or
\theta - K[not] happensAt(E_k, T),
                                        relative_complement_all
^{0-M}[not] holdsAt(F_m = V_m, T),
\theta - N_{\text{atemporal-constraint}_n}
We may use FVPs to model situations of interest.
```

# Periklis Mantenoglou<sup>1</sup>

# Alexander Artikis<sup>12</sup>

<sup>1</sup>NCSR "Demokritos", Greece

<sup>2</sup>University of Piraeus, Greece

| <b>Problem Statement &amp; Proposed Solution</b>                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Challenges:</li> <li>Most Event Calculus specifications contain only SFs.</li> <li>The knowledge engineer may detect only a portion of SFs that can be re-writt equivalent SDFs.</li> </ul> |
| Our Approach:                                                                                                                                                                                        |
| Formal characterisation of the class of SFs that are translatable into equivalen<br>SDFs.                                                                                                            |
| Compiler that identifies and re-writes them as SDFs.                                                                                                                                                 |

**Reproducible empirical evaluation** on numerous **real domain specifications**.

## **Example of a Translatable SF**

In human activity recognition, we may use the FVP  $meeting(P_1, P_2) = interact$  in or monitor when two people,  $P_1$  and  $P_2$ , are having a meeting.

#### SF: initiatedAt( $meeting(P_1, P_2) = interact, T) \leftarrow$ happensAt(start( $active(P_1)$ =true), T), $holdsAt(close(P_1, P_2) = true, T),$ not happensAt(end( $close(P_1, P_2)$ =true), T). initiatedAt( $meeting(P_1, P_2) = interact, T) \leftarrow$ happensAt(start( $close(P_1, P_2)$ =true), T), $holdsAt(active(P_1) = true, T),$ not happensAt(end( $active(P_1)$ =true), T). initiatedAt( $meeting(P_1, P_2) = interact, T) \leftarrow$ happensAt(start( $active(P_1)$ =true), T), happensAt(start( $close(P_1, P_2)$ =true), T). terminatedAt( $meeting(P_1, P_2) = interact, T) \leftarrow$ happensAt(end( $active(P_1)$ =true), T). terminatedAt( $meeting(P_1, P_2) = interact, T) \leftarrow$ happensAt(end( $close(P_1, P_2)$ =true), T).

SDF:

holdsFor( $meeting(P_1, P_2) = interac$ holdsFor( $active(P_1)$ =true,  $I_a$ ),  $holdsFor(close(P_1, P_2) = true, I_c)$ intersect\_all( $[I_a, I_c], I$ ).

Boolean definition:  $meeting(P_1, P_2) = interact \leftrightarrow$  $active(P_1) = true \land close(P_1, P_2) = true$ 

The above definitions for FVP  $meeting(P_1, P_2) = interact$  are **equivalent**, i.e., they the same holdsAt(meeting( $P_1, P_2$ )=interact, T) atoms, for every time-point T.

Key observation: The SF definition of  $meeting(P_1, P_2) = interact$  includes one ini (termination) rule for each one of the possible ways of changing the truth value Boolean definition to true (false).



|                                 | Theoretical Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ten as                          | <ul> <li>An SF is translatable to an SDF iff it is:</li> <li>inertial condition symmetric,</li> <li>guard condition symmetric and</li> <li>Boolean representation symmetric.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nt                              | <ul> <li>We have devised and implemented an algorithm that:</li> <li>identifies the SFs that are translatable, and</li> <li>maps them into equivalent SDFs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | <b>Experimental Analysis</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | We evaluated our approach on Event Calculus rule-sets formalising:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| order to                        | <ul> <li>▶ human activity recognition (\$\mathcal{E}_h^i\$).</li> <li>▶ maritime situational awareness (\$\mathcal{E}_m^i\$).</li> <li>▶ city transport management (\$\mathcal{E}_t^i\$).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ct, I) \leftarrow$             | <ul> <li>▶ legal contract verification (E<sup>i</sup><sub>l</sub>).</li> <li>▶ clinical guideline monitoring (E<sup>i</sup><sub>c</sub>).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ),                              | <ul> <li>► authorisation policy conflicts (\$\mathcal{E}_{c}^{i}\$).</li> <li>► redundant authorisation policies (\$\mathcal{E}_{r}^{i}\$).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | $\mathcal{E}_x^i$ were hand-crafted and contain only SFs. $\mathcal{E}_x^o$ is an optimised rule-set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rue                             | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1\\ \\ \end{array}\end{array} \\ \begin{array}{c} 200\\ \\ 150\\ \\ 150\\ \\ \end{array} \\ \begin{array}{c} 569\\ \\ 50\\ \\ 0 \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ |
| lead to<br>itiation<br>e of its | $ \begin{array}{c} \begin{array}{c} 10^{6} \\ 10^{5} \\ 10^{4} \\ 10^{3} \\ 10^{2} \\ 10^{1} \\ \end{array} \\ \begin{array}{c} \mathcal{E}_{h}^{i} \\ \mathcal{E}_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





 $\mathbf{ze}$ 

