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Problem Statement & Motivation Expressive Power: Cyclic Dependencies & Deadlines

Real-world Complex Event Recognition (CER) applications re- The Run-Time Event Calculus has been extended to express:

quire Stream Reasoning (SR) techniques, which feature: « cyclic dependencies in temporal specifications

= highly-efficient reasoning over data streams = properties subject to deadlines

= high expressive power in spatiotemporal specifications . . . . . . . . . . .
5 P P P P P Efficient reasoning over specifications with cyclic dependencies or properties with deadlines requires:

= robustness to uncertainty
= modelling specifications as locally stratified logic programs
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Goal of the Thesis

Figure 1. The event description of a simple voting protocol. Full dependency graph (left) and strongly connected component contracted

The development of a logic-based Stream Reasoning system dependency graph (right)
with the following properties:

= high efficiency and optimisation techniques . U2 . =

= high expressive power . . time . . time

= highly-efficient probabilistic inference algorithms > >
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neural-symbolic techniques
Figure 2. An example of modelling non-extensible (left) and extensible (right) deadlines in the Run-Time Event Calculus

Event Calculus

. . . Online Reasoning under Uncertainty with the Event Calculus
A logic-based, temporal formalism for representing and rea-

soning about events and their effects. An online version of the Probabilistic Interval-based Event Calculus.

* built-in representation of the common-sense law of inertia = online interval computation over temporal windows
" succinct and intuitive definitions of domain specifications = 3 minimal memory for storing potential starting points of future intervals
" logic programming implementation = 2 bounded memory version which further decreases memory requirements while maintaining high accuracy
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initiatedAt(moving(P;, Py) = true, T') <

An Event Calculus dialect optimised for Stream Reasoning. ity eiv )

holdsAt(close(P;, Psy) = true, T'),
holdsAt(similarOrientation(P;, Py) = true, T').

0.73 :: happensAt(walking(idy), T;)
0.79 :: happensAt(walking(id;), T;)
0.92 :: happensAt(active(ids), T;)
0.85 :: happensAt(inactive(id;), Ts)
(
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Prob-EC =
Event Calculus

+ ProblLog
0.70 :: happensAt(active(ids), Ts)

0.45 :: happensAt(walking(idy), Ts)

Prolog implementation

terminatedAt(moving(P;, Ps) = true, T') <+ Point-based CE Stream

- 1 happensAt(walking(P;), T),
formal semantics T L,

0.73 :: holdsAt(mowving(idy, id;), T;)
0.83 :: holdsAt(meeting(id;, ids), Ts)
0.34 :: holdsAt(moving(idy, ids), Ts)
0.56 :: holdsAt(moving(idy, id; ), Ts)
(
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windowing, caching and indexing techniques

= efficient enough for CER applications [ Event Calculus Axioms T i i
holdsAt(F =V, T) <« :
initially(F = V),
o . not broken(F" = V., 0, T). Interval-based CE Stream

Probabilistic Event Calculus holdsAt(F = V, T) + 0.61 :: holdsFor(moving(ids, ids), ( Ty, Tz))

initiatedAt(F = V, T,), T, < T, 0.88 :: holdsFor(meeting(id;, ids), (Ts, Ts))

ofe 4o . . . . not broken(F" =V, T, T). PIEC + | 0.66 :: holdsFor(moving(idy, ids), (Ts, T7))

A probabilistic Event Calculus dialect for handling noise in \ % J S e oot N )
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the input data. ;

= built on top of ProblLog Figure 3. Online Probabilistic Interval-based Event Calculus: Architecture

= caching mechanism to avoid re-computations

= high accuracy in case of: — ) \
= multiple complex event definitions | -  — {
= few probabilistic conjuncts in definitions

ot

o
00

probability fluctuations may deteriorate recognition
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A batch processing algorithm over instantaneous recognition.
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= linear-time batch processing
Figure 4. Bounded-memory Online Probabilistic Interval-based Event Calculus in action

Work So Far Further Work

We have worked on the following topics: ‘
In the future, we aim to:

= Probabilistic Interval-based Event Calculus for online

) = develop highly-efficient probabilistic inference algorithms for Event Calculus theories
reasoning

« Run-Time Event Calculus with extended expressive power = |[ntegrate probabilistic reasoning in the Run-Time Event Calculus

= Combine these approaches in a neuro-symbolic framework
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