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Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F=V holds at a particular time-point if F=V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.
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Run-Time Event Calculus (RTEC)

Simple Fluent (SF):
initiatedAt(F=V,T)←

happensAt(EIn1 ,T)[,
conditions]....

terminatedAt(F=V,T)←
happensAt(ET1 ,T)[,
conditions]....

where conditions:
0−K[not] happensAt(Ek,T),
0−M[not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

Statically Determined Fluent (SDF):
holdsFor(F=V, I)←

holdsFor(F1 =V1, I1)[,
holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In),
intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.
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intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
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▶ SDFs:
▶ exponentially more compact.
▶ more efficient to reason with.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.
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Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.

▶ The knowledge engineer may detect only a portion of SFs that
can be re-written as equivalent SDFs.

Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.
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Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).
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Theoretical Results

Translatable SFs
An SF is translatable to an SDF iff it is:
▶ inertial condition symmetric,
▶ guard condition symmetric and
▶ Boolean representation symmetric.

Compiler
We have devised and implemented an algorithm that:
▶ identifies the SFs that are translatable, and
▶ maps them into equivalent SDFs.
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Experimental Evaluation
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Event Calculus specifications for:
▶ human activity recognition.
▶ maritime situational awareness.
▶ city transport management.
▶ legal contract verification (Parvizimosaed et al. 2022).
▶ clinical guideline monitoring (Bragaglia et al. 2012).
▶ authorisation policy conflicts (Zahoor et al. 2022).
▶ redundant authorisation policies (Zahoor et al. 2023).
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Summary & Future Work

Summary:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.

▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.
Future Work:
▶ Compile RTEC specifications into automata, towards complex

event forecastingAlevizos et al., Complex event forecasting
with prediction suffix tress. In VLDB Journal, 31(1), 157–180,
2022..
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Future Work:
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1Alevizos et al., Complex event forecasting with prediction suffix tress. In
VLDB Journal, 31(1), 157–180, 2022.
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