
Temporal Specification Optimisation
for the Event Calculus

Periklis Mantenoglou Alexander Artikis

NCSR Demokritos, Greece

http://cer.iit.demokritos.gr/

http://cer.iit.demokritos.gr/

Temporal Pattern Matching over Streams

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Stream
Reasoning
System

Patterns for
Situations of Interest

Streams of
Simple Events

.

.

Streams of
Situations of Interest

.

.

https://cer.iit.demokritos.gr (activity recognition)

1

https://www.youtube.com/watch?v=H-5dXRX-cbU

Temporal Pattern Matching over Streams

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Stream
Reasoning
System

Patterns for
Situations of Interest

Streams of
Simple Events

.

.

Streams of
Situations of Interest

.

.

https://cer.iit.demokritos.gr (activity recognition)

1

https://www.youtube.com/watch?v=H-5dXRX-cbU

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F=V holds at a particular time-point if F=V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.
▶ Built-in representation of inertia:

▶ F=V holds at a particular time-point if F=V has been
initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Run-Time Event Calculus (RTEC)

Simple Fluent (SF):
initiatedAt(F=V,T)←

happensAt(EIn1 ,T)[,
conditions]....

terminatedAt(F=V,T)←
happensAt(ET1 ,T)[,
conditions]....

where conditions:
0−K[not] happensAt(Ek,T),
0−M[not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

Statically Determined Fluent (SDF):
holdsFor(F=V, I)←

holdsFor(F1 =V1, I1)[,
holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In),
intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

Simple Fluent (SF):
initiatedAt(F=V,T)←

happensAt(EIn1 ,T)[,
conditions]....

terminatedAt(F=V,T)←
happensAt(ET1 ,T)[,
conditions]....

where conditions:
0−K[not] happensAt(Ek,T),
0−M[not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

Statically Determined Fluent (SDF):
holdsFor(F=V, I)←

holdsFor(F1 =V1, I1)[,
holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In),
intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

Simple Fluent (SF):
initiatedAt(F=V,T)←

happensAt(EIn1 ,T)[,
conditions]....

terminatedAt(F=V,T)←
happensAt(ET1 ,T)[,
conditions]....

where conditions:
0−K[not] happensAt(Ek,T),
0−M[not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

▶ SFs ⊇ SDFs.

Statically Determined Fluent (SDF):
holdsFor(F=V, I)←

holdsFor(F1 =V1, I1)[,
holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In),
intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

Simple Fluent (SF):
initiatedAt(F=V,T)←

happensAt(EIn1 ,T)[,
conditions]....

terminatedAt(F=V,T)←
happensAt(ET1 ,T)[,
conditions]....

where conditions:
0−K[not] happensAt(Ek,T),
0−M[not] holdsAt(Fm =Vm,T),
0−Natemporal-constraintn

▶ SFs ⊇ SDFs.

Statically Determined Fluent (SDF):
holdsFor(F=V, I)←

holdsFor(F1 =V1, I1)[,
holdsFor(F2 =V2, I2), . . .
holdsFor(Fn =Vn, In),
intervalConstruct(L1, In+1), . . .
intervalConstruct(Lm, I)].

where intervalConstruct:
union_all or
intersect_all or
relative_complement_all

▶ SDFs:
▶ exponentially more compact.
▶ more efficient to reason with.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.

▶ The knowledge engineer may detect only a portion of SFs that
can be re-written as equivalent SDFs.

Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.

4

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.
▶ The knowledge engineer may detect only a portion of SFs that

can be re-written as equivalent SDFs.

Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.

4

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.
▶ The knowledge engineer may detect only a portion of SFs that

can be re-written as equivalent SDFs.
Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.

▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.

4

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.
▶ The knowledge engineer may detect only a portion of SFs that

can be re-written as equivalent SDFs.
Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.

▶ Reproducible empirical evaluation on numerous real domain
specifications.

4

Problem Statement & Proposed Solution

Challenges:
▶ Most Event Calculus specifications contain only SFs.
▶ The knowledge engineer may detect only a portion of SFs that

can be re-written as equivalent SDFs.
Our Approach:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.

4

Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

5

Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

5

Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

SDF is satisfied iff we have:
active(P1)= true∧close(P1,P2)= true.

5

Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

SDF is satisfied iff we have:
active(P1)= true∧close(P1,P2)= true.

active(P1)= true starts to hold while
close(P1,P2)= true holds.
⇒ SDF gets satisfied.

5

Example: A Translatable SF

SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

SDF is satisfied iff we have:
active(P1)= true∧close(P1,P2)= true.

active(P1)= true stops holding.
⇒ SDF gets violated.

5

Example: A Translatable SF
SF:
initiatedAt(meeting(P1,P2)= interact,T)←

happensAt(start(active(P1)= true),T),
holdsAt(close(P1,P2)= true,T),
not happensAt(end(close(P1,P2)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(close(P1,P2)= true),T),
holdsAt(active(P1)= true,T),
not happensAt(end(active(P1)= true),T).

initiatedAt(meeting(P1,P2)= interact,T)←
happensAt(start(active(P1)= true),T),
happensAt(start(close(P1,P2)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(active(P1)= true),T).

terminatedAt(meeting(P1,P2)= interact,T)←
happensAt(end(close(P1,P2)= true),T).

SDF:
holdsFor(meeting(P1,P2)= interact, I)←

holdsFor(active(P1)= true, Ia),
holdsFor(close(P1,P2)= true, Ic),
intersect_all([Ia, Ic], I).

SDF is satisfied iff we have:
active(P1)= true∧close(P1,P2)= true.

SF includes 1 rule for each possible
way of switching the truth value of:
active(P1)= true∧close(P1,P2)= true.
⇒ SF is inertial condition symmetric.

5

Theoretical Results

Translatable SFs
An SF is translatable to an SDF iff it is:
▶ inertial condition symmetric,
▶ guard condition symmetric and
▶ Boolean representation symmetric.

Compiler
We have devised and implemented an algorithm that:
▶ identifies the SFs that are translatable, and
▶ maps them into equivalent SDFs.

6

Theoretical Results

Translatable SFs
An SF is translatable to an SDF iff it is:
▶ inertial condition symmetric,
▶ guard condition symmetric and
▶ Boolean representation symmetric.

Compiler
We have devised and implemented an algorithm that:
▶ identifies the SFs that are translatable, and
▶ maps them into equivalent SDFs.

6

Experimental Evaluation

E i
h Eo

h E i
m Eo

m E i
t Eo

t E i
l Eo

l E i
g Eo

g E i
c Eo

c E i
r Eo

r

0

50

100

150

200
N
u
m
b
er

of
R
u
le
s Input

Optimised
569

71

1212

215

1030

75

469

182 108
39

150

45
120

29

Event Calculus specifications for:
▶ human activity recognition.
▶ maritime situational awareness.
▶ city transport management.
▶ legal contract verification (Parvizimosaed et al. 2022).
▶ clinical guideline monitoring (Bragaglia et al. 2012).
▶ authorisation policy conflicts (Zahoor et al. 2022).
▶ redundant authorisation policies (Zahoor et al. 2023).

7

Experimental Evaluation

E i
h Eo

h E i
m Eo

m E i
t Eo

t E i
l Eo

l E i
g Eo

g E i
c Eo

c E i
r Eo

r

0

50

100

150

200
N
u
m
b
er

o
f
R
u
le
s Input

Optimised
569

71

1212

215

1030

75

469

182 108
39

150

45
120

29

26K
3K

46K
5K

91K
10K

183K
20K

1

101

102

103

104

105

106

Window sizeR
e
a
s
o
n
in

g
t
im

e
(
m

s
)

Ei
h

Eo
h

40K
3K

73K
5K

159K
10K

328K
20K

Window size

Ei
m

Eo
m

2K
3K

4K
5K

8K
10K

16K
20K

Window size

Ei
t

Eo
t

Code, Data & Temporal Specifications: https://github.com/aartikis/RTEC 8

https://github.com/aartikis/RTEC

Summary & Future Work

Summary:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.

▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.
Future Work:
▶ Compile RTEC specifications into automata, towards complex

event forecastingAlevizos et al., Complex event forecasting
with prediction suffix tress. In VLDB Journal, 31(1), 157–180,
2022..

9

Summary & Future Work

Summary:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.

▶ Reproducible empirical evaluation on numerous real domain
specifications.

Future Work:
▶ Compile RTEC specifications into automata, towards complex

event forecastingAlevizos et al., Complex event forecasting
with prediction suffix tress. In VLDB Journal, 31(1), 157–180,
2022..

9

Summary & Future Work

Summary:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.

Future Work:
▶ Compile RTEC specifications into automata, towards complex

event forecastingAlevizos et al., Complex event forecasting
with prediction suffix tress. In VLDB Journal, 31(1), 157–180,
2022..

9

Summary & Future Work

Summary:
▶ Formal characterisation of the class of SFs that are

translatable into equivalent SDFs.
▶ Compiler that identifies and re-writes them as SDFs.
▶ Reproducible empirical evaluation on numerous real domain

specifications.
Future Work:
▶ Compile RTEC specifications into automata, towards complex

event forecasting1.

1Alevizos et al., Complex event forecasting with prediction suffix tress. In
VLDB Journal, 31(1), 157–180, 2022.

9

