
Sequencing in the

Run-Time Event Calculus

Periklis Mantenoglou1 Alexander Artikis2,3

1Örebro University, Sweden
2NCSR Demokritos, Greece

3University of Piraeus, Greece

Run-Time Event Calculus (RTEC)
▶ A composite event recognition framework that is formal,

expressive and efficient.

holdsFor(anchoredOrMoored(Vl)= true, I)←
holdsFor(stopped(Vl)= farFromPorts, Isf),
holdsFor(withinArea(Vl , anchorage)= true, Ia),
intersect all([Isf , Ia], Isfa),
holdsFor(stopped(Vl)= nearPorts, Isn),
union all([Isfa, Isn], I).

Artikis et al., An Event Calculus for Event Recognition. TKDE, 2015.

https://github.com/aartikis/rtec

1

https://github.com/aartikis/rtec

Sequencing Operator for RTEC

Key Ingredients:

▶ Adjacency function: requires successive intervals.

▶ Composition function ⊗: constructs the output intervals.

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

▶ Our sequencing operator produces maximal disjoint intervals.

2

Sequencing Operator for RTEC

Key Ingredients:

▶ Adjacency function: requires successive intervals.

▶ Composition function ⊗: constructs the output intervals.

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

▶ Our sequencing operator produces maximal disjoint intervals.

2

Sequencing Operator for RTEC

Key Ingredients:

▶ Adjacency function: requires successive intervals.

▶ Composition function ⊗: constructs the output intervals.

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

▶ Our sequencing operator produces maximal disjoint intervals.

2

Maximal Disjoint Interval Requirement

▶ Sequencing operators of complex event recognition
frameworks do not meet the maximal disjoint interval
requirement.

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

Bucchi M., Grez A., Quintana A., Riveros C., Vansummeren S.: CORE: a complex event
recognition engine. Proc. VLDB Endow., 15(9):1951–1964, 2022.

Alevizos E., Artikis A., Paliouras G.: Complex event recognition with symbolic register
transducers. Proc. VLDB Endow., 17(11):3165–3177, 2024.

3

Associativity Requirement

▶ Associativity: required for optimising hierarchial patterns.

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

4

Associativity Requirement

▶ Associativity: required for optimising hierarchial patterns.

For a sequencing operator where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

4

Associativity Requirement

▶ Associativity: required for optimising hierarchial patterns.

For a sequencing operator where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

4

Associativity Requirement

▶ Associativity: required for optimising hierarchial patterns.

For a sequencing operator where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

4

Associativity Requirement
▶ Associativity: required for optimising hierarchial patterns.

For a sequencing operator where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

▶ Associativity is violated → Activities (α1 ;α2) ;α3 and
α1 ;(α2 ;α3) are assigned different lists of intervals. 4

Sequencing Operator for RTEC
▶ Associativity: required for optimising hierarchial patterns.

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

▶ Our sequencing operator satisfies associativity → Activities
(α1 ;α2) ;α3 and α1 ; (α2 ;α3) are assigned the same list of
intervals.

5

RTECS: RTEC with Sequencing

holdsFor(fishingTripStart(Vl)= true, I)←
holdsFor(anchoredOrMoored(Vl)= true, Iam),
holdsFor(withinArea(Vl , fishing)= true, If),
seq(Iam, If , I).

Semantics

Pattern hierarchies in RTECS are locally stratified logic programs.

Correctness

If I1 and I2 contain the maximal intervals of activities a1 and a2 ,
then seq(I1 , I2 , I) computes the list of maximal intervals I of a1 ; a2 .

Complexity

RTECS evaluates seq(I1 , I2 , I) in time linear to the number of
intervals in I1 and I2 .

6

RTECS: RTEC with Sequencing

holdsFor(fishingTripStart(Vl)= true, I)←
holdsFor(anchoredOrMoored(Vl)= true, Iam),
holdsFor(withinArea(Vl , fishing)= true, If),
seq(Iam, If , I).

Semantics

Pattern hierarchies in RTECS are locally stratified logic programs.

Correctness

If I1 and I2 contain the maximal intervals of activities a1 and a2 ,
then seq(I1 , I2 , I) computes the list of maximal intervals I of a1 ; a2 .

Complexity

RTECS evaluates seq(I1 , I2 , I) in time linear to the number of
intervals in I1 and I2 .

6

RTECS: RTEC with Sequencing

holdsFor(fishingTripStart(Vl)= true, I)←
holdsFor(anchoredOrMoored(Vl)= true, Iam),
holdsFor(withinArea(Vl , fishing)= true, If),
seq(Iam, If , I).

Semantics

Pattern hierarchies in RTECS are locally stratified logic programs.

Correctness

If I1 and I2 contain the maximal intervals of activities a1 and a2 ,
then seq(I1 , I2 , I) computes the list of maximal intervals I of a1 ; a2 .

Complexity

RTECS evaluates seq(I1 , I2 , I) in time linear to the number of
intervals in I1 and I2 .

6

RTECS: RTEC with Sequencing

holdsFor(fishingTripStart(Vl)= true, I)←
holdsFor(anchoredOrMoored(Vl)= true, Iam),
holdsFor(withinArea(Vl , fishing)= true, If),
seq(Iam, If , I).

Semantics

Pattern hierarchies in RTECS are locally stratified logic programs.

Correctness

If I1 and I2 contain the maximal intervals of activities a1 and a2 ,
then seq(I1 , I2 , I) computes the list of maximal intervals I of a1 ; a2 .

Complexity

RTECS evaluates seq(I1 , I2 , I) in time linear to the number of
intervals in I1 and I2 .

6

Experiments: Sequencing N Activities

Parameters Reasoning Time (ms) Computed Intervals

N D RTECS CORE RTECS CORE

3 10K 19 1K 500 148K
6 10K 23 7K 402 669K
12 10K 30 2K 35 109K

3 50K 82 109K 500 19M
6 50K 87 >600K 500 >30M
12 50K 107 >600K 500 >30M

▶ Pattern: α1 (Id) ;α2 (Id) ; . . . ;αN(Id)
→ A sequence of N different unary activities with the same
argument.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

7

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Sequencing N Activities

Parameters Reasoning Time (ms) Computed Intervals

N D RTECS CORE RTECS CORE

3 10K 19 1K 500 148K
6 10K 23 7K 402 669K
12 10K 30 2K 35 109K

3 50K 82 109K 500 19M
6 50K 87 >600K 500 >30M
12 50K 107 >600K 500 >30M

▶ Pattern: α1 (Id) ;α2 (Id) ; . . . ;αN(Id)
→ A sequence of N different unary activities with the same
argument.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

7

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Sequencing N Activities

Parameters Reasoning Time (ms) Computed Intervals

N D RTECS CORE RTECS CORE

3 10K 19 1K 500 148K
6 10K 23 7K 402 669K
12 10K 30 2K 35 109K

3 50K 82 109K 500 19M
6 50K 87 >600K 500 >30M
12 50K 107 >600K 500 >30M

▶ Pattern: α1 (Id) ;α2 (Id) ; . . . ;αN(Id)
→ A sequence of N different unary activities with the same
argument.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

7

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Sequencing with
Hierarchical Patterns

Reasoning Time (ms) Computed Intervals

N RTECS RTECS-f CORE RTECS RTECS-f CORE

3 31 39 2K 1.5K 1.5K 193K
6 63 84 18K 6.6K 6.6K 1.5M
12 240 400 48K 12.4K 12.4K 1.6M

▶ Patterns: α1 (Id) ;α2 (Id) ; . . . ;αN(Id) and all its possible
subpatterns, e.g.:
▶ α1 (Id) ;α2 (Id) ; . . . ;αN−1 (Id)
▶ αN−2 (Id) ;αN−1 (Id) ;αN(Id)
▶ etc.

▶ For N = 12 , we have a hierarchy of 66 patterns.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

8

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Sequencing with
Hierarchical Patterns

Reasoning Time (ms) Computed Intervals

N RTECS RTECS-f CORE RTECS RTECS-f CORE

3 31 39 2K 1.5K 1.5K 193K
6 63 84 18K 6.6K 6.6K 1.5M
12 240 400 48K 12.4K 12.4K 1.6M

▶ Patterns: α1 (Id) ;α2 (Id) ; . . . ;αN(Id) and all its possible
subpatterns, e.g.:
▶ α1 (Id) ;α2 (Id) ; . . . ;αN−1 (Id)
▶ αN−2 (Id) ;αN−1 (Id) ;αN(Id)
▶ etc.

▶ For N = 12 , we have a hierarchy of 66 patterns.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

8

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Sequencing with
Hierarchical Patterns

Reasoning Time (ms) Computed Intervals

N RTECS RTECS-f CORE RTECS RTECS-f CORE

3 31 39 2K 1.5K 1.5K 193K
6 63 84 18K 6.6K 6.6K 1.5M
12 240 400 48K 12.4K 12.4K 1.6M

▶ Patterns: α1 (Id) ;α2 (Id) ; . . . ;αN(Id) and all its possible
subpatterns, e.g.:
▶ α1 (Id) ;α2 (Id) ; . . . ;αN−1 (Id)
▶ αN−2 (Id) ;αN−1 (Id) ;αN(Id)
▶ etc.

▶ For N = 12 , we have a hierarchy of 66 patterns.

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

8

https://github.com/Periklismant/rtecs_ecai25_supplementary

Experiments: Real Maritime Dataset

Window Size Reasoning Time (sec) Computed Intervals

Days D RTECS RTECS

1 73K 2 18K
2 145K 6 33K
4 272K 14 61K
8 545K 32 119K
16 1M 79 236K

▶ Patterns: Composite Maritime Activities
▶ Dataset:

▶ 18M position signals
▶ 5K vessels
▶ area near the port of Brest, France
▶ 6 months of data

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

Public Maritime Dataset: https://zenodo.org/records/1167595

9

https://github.com/Periklismant/rtecs_ecai25_supplementary
https://zenodo.org/records/1167595

Experiments: Real Maritime Dataset

Window Size Reasoning Time (sec) Computed Intervals

Days D RTECS RTECS

1 73K 2 18K
2 145K 6 33K
4 272K 14 61K
8 545K 32 119K
16 1M 79 236K

▶ Patterns: Composite Maritime Activities
▶ Dataset:

▶ 18M position signals
▶ 5K vessels
▶ area near the port of Brest, France
▶ 6 months of data

Code, Data & Temporal Specifications:
https://github.com/Periklismant/rtecs_ecai25_supplementary

Public Maritime Dataset: https://zenodo.org/records/1167595

9

https://github.com/Periklismant/rtecs_ecai25_supplementary
https://zenodo.org/records/1167595

Summary & Future Work

Summary:
▶ A sequencing operator that is:

▶ interval-based,
▶ compositional, and
▶ associative.

▶ RTECS: stream reasoning with sequencing.

▶ Reproducible empirical evaluation with real and synthetic data.

Future Work:

▶ Windowing.

10

Summary & Future Work

Summary:
▶ A sequencing operator that is:

▶ interval-based,
▶ compositional, and
▶ associative.

▶ RTECS: stream reasoning with sequencing.

▶ Reproducible empirical evaluation with real and synthetic data.

Future Work:

▶ Windowing.

10

Summary & Future Work

Summary:
▶ A sequencing operator that is:

▶ interval-based,
▶ compositional, and
▶ associative.

▶ RTECS: stream reasoning with sequencing.

▶ Reproducible empirical evaluation with real and synthetic data.

Future Work:

▶ Windowing.

10

Summary & Future Work

Summary:
▶ A sequencing operator that is:

▶ interval-based,
▶ compositional, and
▶ associative.

▶ RTECS: stream reasoning with sequencing.

▶ Reproducible empirical evaluation with real and synthetic data.

Future Work:

▶ Windowing.

10

Appendix

0

Composite Event Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Composite
Event

Recognition
System

Composite Event
Definitions

Simple Event Stream

.

.

Composite Event Stream

.

.

https://cer.iit.demokritos.gr

(maritime situational awareness)

▶ Composite activity patterns often require sequencing.

▶ Example: phases of a fishing trip.

1

https://www.youtube.com/watch?v=8WaMzzFtGXE
https://www.youtube.com/watch?v=8WaMzzFtGXE

Composite Event Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Composite
Event

Recognition
System

Composite Event
Definitions

Simple Event Stream

.

.

Composite Event Stream

.

.

https://cer.iit.demokritos.gr

(maritime situational awareness)

▶ Composite activity patterns often require sequencing.

▶ Example: phases of a fishing trip.

1

https://www.youtube.com/watch?v=8WaMzzFtGXE
https://www.youtube.com/watch?v=8WaMzzFtGXE

Composite Event Recognition

INPUT ▶ RECOGNITION ▶ OUTPUT ▶

Composite
Event

Recognition
System

Composite Event
Definitions

Simple Event Stream

.

.

Composite Event Stream

.

.

https://cer.iit.demokritos.gr

(maritime situational awareness)

▶ Composite activity patterns often require sequencing.

▶ Example: phases of a fishing trip.

1

https://www.youtube.com/watch?v=8WaMzzFtGXE
https://www.youtube.com/watch?v=8WaMzzFtGXE

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

▶ Fluents definitions:
▶ succinct and intuitive representations of composite activities.
▶ inefficient representations for stream reasoning.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

▶ Fluents definitions:
▶ succinct and intuitive representations of composite activities.
▶ inefficient representations for stream reasoning.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

▶ Fluents definitions:
▶ succinct and intuitive representations of composite activities.

▶ inefficient representations for stream reasoning.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Event Calculus

▶ A logic programming language for representing and reasoning
about events and their effects.

▶ Key components:
▶ event (typically instantaneous).
▶ fluent: a property that may have different values at different

points in time.

▶ Built-in representation of inertia:
▶ F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

▶ Fluents definitions:
▶ succinct and intuitive representations of composite activities.
▶ inefficient representations for stream reasoning.

Robert A. Kowalski, Marek J. Sergot: A Logic-based Calculus of Events. New Gener.
Comput. 4(1): 67-95, 1986.

2

Run-Time Event Calculus (RTEC)
The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ However, RTEC does not express sequencing.

▶ Contribution: a sequencing operator for RTEC that preserves:
▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)
The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

Inertial Activities:
initiatedAt(withinArea(Vl ,AreaType)= true,T)←

happensAt(entersArea(Vl ,AreaID),T),
areaType(AreaID,AreaType).

terminatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(leavesArea(Vl ,AreaID),T),
areaType(AreaID,AreaType).

▶ However, RTEC does not express sequencing.

▶ Contribution: a sequencing operator for RTEC that preserves:
▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)
The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

Inertial Activities:
initiatedAt(withinArea(Vl ,AreaType)= true,T)←

happensAt(entersArea(Vl ,AreaID),T),
areaType(AreaID,AreaType).

terminatedAt(withinArea(Vl ,AreaType)= true,T)←
happensAt(leavesArea(Vl ,AreaID),T),
areaType(AreaID,AreaType).

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)
The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

Statically Determined Activities:

holdsFor(anchoredOrMoored(Vl)= true, I)←
holdsFor(stopped(Vl)= farFromPorts, Isf),
holdsFor(withinArea(Vl , anchorage)= true, Ia),
intersect all([Isf , Ia], Isfa),
holdsFor(stopped(Vl)= nearPorts, Isn),
union all([Isfa, Isn], I).

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.

▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ RTEC has several benefits compared to the state of the art:
▶ relational & hierarchical patterns with background knowledge.
▶ inertial & statically determined activities.
▶ scalability to large real-world scenarios.

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ RTEC has several benefits compared to the state of the art:
▶ relational & hierarchical patterns with background knowledge.
▶ inertial & statically determined activities.
▶ scalability to large real-world scenarios.

▶ However, RTEC does not express sequencing.

▶ Contribution: a sequencing operator for RTEC that preserves:
▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ RTEC has several benefits compared to the state of the art:
▶ relational & hierarchical patterns with background knowledge.
▶ inertial & statically determined activities.
▶ scalability to large real-world scenarios.

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.

▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ RTEC has several benefits compared to the state of the art:
▶ relational & hierarchical patterns with background knowledge.
▶ inertial & statically determined activities.
▶ scalability to large real-world scenarios.

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.
▶ correctness over pattern hierarchies.

▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Run-Time Event Calculus (RTEC)

The Run-Time Event Calculus:

▶ Composite activity pattern matching over large-scale streams
of events.

▶ RTEC has several benefits compared to the state of the art:
▶ relational & hierarchical patterns with background knowledge.
▶ inertial & statically determined activities.
▶ scalability to large real-world scenarios.

▶ However, RTEC does not express sequencing.
▶ Contribution: a sequencing operator for RTEC that preserves:

▶ interval-based semantics for durative activities.
▶ correctness over pattern hierarchies.
▶ efficiency over large-scale activity streams.

Artikis A., Sergot M. and Paliouras G., An Event Calculus for Event Recognition. In IEEE
Transactions on Knowledge and Data Engineering (TKDE), 27(4), 895–908, 2015.

3

Abstract Sequencing Model

An abstract sequencing model is a tuple (T ,≺, S,⊗), where
▶ T is a set of time-stamps.

▶ ≺ is a partial order on T .

▶ S : T × 2T → 2T is a successor function.
S(t,F) is the set of immediate successor time-stamps of t in
set F .

▶ ⊗ : T × T → T is a composition operator.
t1 ⊗ t2 is the time-stamp of the sequence of two activities
with time-stamps t1 and t2 .

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

4

Abstract Sequencing Model

An abstract sequencing model is a tuple (T ,≺, S,⊗), where
▶ T is a set of time-stamps.

▶ ≺ is a partial order on T .

▶ S : T × 2T → 2T is a successor function.
S(t,F) is the set of immediate successor time-stamps of t in
set F .

▶ ⊗ : T × T → T is a composition operator.
t1 ⊗ t2 is the time-stamp of the sequence of two activities
with time-stamps t1 and t2 .

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

4

Abstract Sequencing Model

An abstract sequencing model is a tuple (T ,≺, S,⊗), where
▶ T is a set of time-stamps.

▶ ≺ is a partial order on T .

▶ S : T × 2T → 2T is a successor function.
S(t,F) is the set of immediate successor time-stamps of t in
set F .

▶ ⊗ : T × T → T is a composition operator.
t1 ⊗ t2 is the time-stamp of the sequence of two activities
with time-stamps t1 and t2 .

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

4

Abstract Sequencing Model

An abstract sequencing model is a tuple (T ,≺, S,⊗), where
▶ T is a set of time-stamps.

▶ ≺ is a partial order on T .

▶ S : T × 2T → 2T is a successor function.
S(t,F) is the set of immediate successor time-stamps of t in
set F .

▶ ⊗ : T × T → T is a composition operator.
t1 ⊗ t2 is the time-stamp of the sequence of two activities
with time-stamps t1 and t2 .

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

4

Sequencing in Cayuga

The sequencing model of Cayuga is (Tcy ,≺cy ,Scy ,⊗cy), where

▶ Tcy : intervals over the positive integers.

▶ i1 ≺cy i2 iff i1 ends before the start of i2 .

▶ i2 ∈ Scy (i1 , I2) iff i2 ∈ I2 , i2 is after i1 and no interval in I2 is
after i1 and ends before i2 .

▶ If i1 ≺cy i2 , we have i1 ⊗cy i2 = (s(i1), e(i2)).

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

5

Sequencing in Cayuga

The sequencing model of Cayuga is (Tcy ,≺cy ,Scy ,⊗cy), where

▶ Tcy : intervals over the positive integers.

▶ i1 ≺cy i2 iff i1 ends before the start of i2 .

▶ i2 ∈ Scy (i1 , I2) iff i2 ∈ I2 , i2 is after i1 and no interval in I2 is
after i1 and ends before i2 .

▶ If i1 ≺cy i2 , we have i1 ⊗cy i2 = (s(i1), e(i2)).

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

5

Sequencing in Cayuga

The sequencing model of Cayuga is (Tcy ,≺cy ,Scy ,⊗cy), where

▶ Tcy : intervals over the positive integers.

▶ i1 ≺cy i2 iff i1 ends before the start of i2 .

▶ i2 ∈ Scy (i1 , I2) iff i2 ∈ I2 , i2 is after i1 and no interval in I2 is
after i1 and ends before i2 .

▶ If i1 ≺cy i2 , we have i1 ⊗cy i2 = (s(i1), e(i2)).

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

5

Sequencing in Cayuga

The sequencing model of Cayuga is (Tcy ,≺cy ,Scy ,⊗cy), where

▶ Tcy : intervals over the positive integers.

▶ i1 ≺cy i2 iff i1 ends before the start of i2 .

▶ i2 ∈ Scy (i1 , I2) iff i2 ∈ I2 , i2 is after i1 and no interval in I2 is
after i1 and ends before i2 .

▶ If i1 ≺cy i2 , we have i1 ⊗cy i2 = (s(i1), e(i2)).

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

5

Sequencing in Cayuga

The sequencing model of Cayuga is (Tcy ,≺cy ,Scy ,⊗cy), where

▶ Tcy : intervals over the positive integers.

▶ i1 ≺cy i2 iff i1 ends before the start of i2 .

▶ i2 ∈ Scy (i1 , I2) iff i2 ∈ I2 , i2 is after i1 and no interval in I2 is
after i1 and ends before i2 .

▶ If i1 ≺cy i2 , we have i1 ⊗cy i2 = (s(i1), e(i2)).

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

White W. M., Riedewald M., Gehrke J., Demers A. J.: What is “next” in event processing.
PODS, 263–272. ACM, 2007.

5

Sequencing in Cayuga: Example

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

[[α1 ;α2]]
cy
S

[[α2]]
cy
S

[[α1]]
cy
S

1 3 5 6 7 8 Time

6

Sequencing in Cayuga: Example

The sequencing operator of Cayuga for two activities α1 and α2

and a stream S is:

[[α1 ;α2]]
cy
S ={i1 ⊗cy i2 | i1 ∈ [[α1]]

cy
S ∧ i2 ∈ Scy (i1 , [[α2]]

cy
S)}

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

6

Sequencing: Requirements for RTEC

Requirement (Maximal Disjoint Intervals)
Consider a sequencing operator “;”, a stream S and activities α1 and α2 .
[[α1 ;α2]]S is composed of maximal disjoint intervals (MDIs).

Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ These requirements imply compositionality.

7

Sequencing: Requirements for RTEC

Requirement (Maximal Disjoint Intervals)
Consider a sequencing operator “;”, a stream S and activities α1 and α2 .
[[α1 ;α2]]S is composed of maximal disjoint intervals (MDIs).

Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ These requirements imply compositionality.

7

Sequencing: Requirements for RTEC

Requirement (Maximal Disjoint Intervals)
Consider a sequencing operator “;”, a stream S and activities α1 and α2 .
[[α1 ;α2]]S is composed of maximal disjoint intervals (MDIs).

Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ These requirements imply compositionality.

7

MDI Requirement: Example

Requirement (Maximal Disjoint Intervals)
Consider a sequencing operator “;”, a stream S and activities α1 and α2 .
[[α1 ;α2]]S is composed of maximal disjoint intervals (MDIs).

α1 ;α2

α2

α1

1 3 5 6 7 8 Time

▶ Cayuga’s sequencing operator violates the MDI requirement.

7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time
7

Associativity: Example
Requirement (Associativity)
Given a stream S and activities α1 , α2 and α3 , [[(α1 ;α2);α3]]S is equal
to [[α1 ; (α2 ;α3)]]S .

▶ For a sequencing model where i1 ⊗ i2 = i2 :

α1 ;(α2 ;α3)

α2 ;α3

(α1 ;α2) ;α3

α1 ;α2

α3

α2

α1

1 3 5 6 7 8 Time

▶ Associativity fails: [[(α1 ;α2) ;α3]]S ̸=[[α1 ;(α2 ;α3)]]S
7

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where

▶ Time-stamps Trt : intervals over the positive integers.
▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .
▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff

▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.

8

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
▶ Time-stamps Trt : intervals over the positive integers.

▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .
▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff

▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.

8

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
▶ Time-stamps Trt : intervals over the positive integers.
▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .

▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff
▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.

8

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
▶ Time-stamps Trt : intervals over the positive integers.
▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .
▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff

▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.

8

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
▶ Time-stamps Trt : intervals over the positive integers.
▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .
▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff

▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.

8

Sequencing Operator for RTEC
The sequencing model of RTEC is (Trt ,≺rt ,A,⊗rt), where
▶ Time-stamps Trt : intervals over the positive integers.
▶ Partial Order: i1 ≺rt i2 iff i1 ends before the start of i2 .
▶ Adjacency Mapping: i2 =A(i1 , I1 , I2) iff

▶ i2 ∈ I2 ,
▶ i2 is after i1 , and
▶ no interval in I1 or I2 is between i1 and i2 .

▶ Composition Operator: i1 ⊗rt i2 = (s(i1), e(i2)), if i1 ≺rt i2 .

The sequencing operator of RTEC computes:

[[α1 ;α2]]
rt
S ={i1 ⊗rt i2 | i1 ∈ [[α1]]

rt
S ∧ i2 =A(i1 , [[α1]]

rt
S , [[α2]]

rt
S) ∧ i2 ̸= ∅}

This sequencing operator is compatible with RTEC because:
▶ [[α1 ;α2]]

rt
S consists of maximal disjoint intervals.

▶ It is associative, i.e., [[(α1 ;α2) ;α3]]
rt
S =[[α1 ;(α2 ;α3)]]

rt
S ,

allowing optimised pattern hierarchies.
8

